Homeotropic Alignment and Selective Adsorption of Nanoporous Polymer Film Polymerized from Hydrogen-bonded Liquid Crystal


Nanoporous polymer film with a hexagonal columnar (Colh) structure was fabricated by templated hydrogen-bonding discotic liquid crystals containing methacrylate functional group. The supramolecular hydrogen-bonded complex T3Ph-L is composed of a 1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene (T3Ph) core molecule as the hydrogen-bonding acceptor and 3,4,5-tris((11-(methacryloyloxy)undecyl)oxy)benzoic acid (L) peripheral molecules as donors. And the Colh structure is always retained after self-assembly, photo-crosslinking, and removal of the template T3Ph. The nanoporous polymer film can retain the Colh phase even under the dry condition, which indicates more possibilities for practical applications. After chemical modification of the inner wall of the nanopores, the nanoporous polymer film with pores of about 1 nm selectively adsorbs ionic dyes, and the adsorption process is spontaneous and exothermic in nature. Homeotropic alignment can be obtained when the blend complex was sandwiched between two modified glasses after annealing by slow cooling, which shows that the nanoporous polymer film has potential in applications such as nanofiltration.

This is a preview of subscription content, log in to check access.


  1. 1

    Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev.2016, 45, 3479–3563.

    CAS  PubMed  Google Scholar 

  2. 2

    Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous organic materials: strategic design and structure-function correlation. Chem. Rev.2017, 117, 1515–1563.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Lugger, J.; Mulder, D. J.; Sijbesma, R.; Schenning, A. Nanoporous polymers based on liquid crystals. Materials (Basel)2018, 11, 104–121.

    Google Scholar 

  4. 4

    Gopinadhan, M.; Deshmukh, P.; Choo, Y.; Majewski, P. W.; Bakajin, O.; Elimelech, M.; Kasi, R. M.; Osuji, C. O. Thermally switchable aligned nanopores by magnetic-field directed self-assembly of block copolymers. Adv. Mater.2014, 26, 5148–5154.

    CAS  PubMed  Google Scholar 

  5. 5

    Deshmukh, P.; Gopinadhan, M.; Choo, Y.; Ahn, S.; Majewski, P. W.; Yoon, S. Y.; Bakajin, O.; Elimelech, M.; Osuji, C. O.; Kasi, R. M. Molecular design of liquid crystalline brush-like block copolymers for magnetic field directed self-assembly: a platform for functional materials. ACS Macro Lett.2014, 3, 462–466.

    CAS  Google Scholar 

  6. 6

    Yin, J.; Yao, X. P.; Liou, J. Y.; Sun, W.; Sun, Y. S.; Wang, Y. Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers. ACS Nano2013, 7, 9961–9974.

    CAS  PubMed  Google Scholar 

  7. 7

    Sun, W.; Wang, Z. G.; Yao, X. P.; Guo, L. M.; Chen, X. Q.; Wang, Y. Surface-active isoporous membranes nondestructively derived from perpendicularly aligned block copolymers for size-selective separation. J. Membr. Sci.2014, 466, 229–237.

    CAS  Google Scholar 

  8. 8

    Wu, D. C.; Xu, F.; Sun, B.; Fu, R. W.; He, H. K.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev.2012, 112, 3959–4015.

    CAS  PubMed  Google Scholar 

  9. 9

    Nickmans, K.; Schenning, A. P. H. J. Directed self-assembly of liquid-crystalline molecular building blocks for sub-5 nm nanopatterning. Adv. Mater.2018, 30, 1703713.

    Google Scholar 

  10. 10

    Gin, D. L.; Noble, R. D. Designing the next generation of chemical separation membranes. Science2011, 332, 674–676.

    CAS  PubMed  Google Scholar 

  11. 11

    Lyu, X. L.; Pan, H. B.; Shen, Z. H.; Fan, X. H. Self-assembly and properties of block copolymers containing mesogen-jacketed liquid crystalline polymers as rod blocks. Chinese J. Polym. Sci.2018, 36, 811–821.

    CAS  Google Scholar 

  12. 12

    Lee, H. K.; Lee, H.; Ko, Y. H.; Chang, Y. J.; Oh, N. K.; Zin, W. C.; Kim, K. Synthesis of a nanoporous polymer with hexagonal channels from supramolecular discotic liquid crystals. Angew. Chem. Int. Ed.2001, 40, 2669–2671.

    Google Scholar 

  13. 13

    Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater.2016, 1, 16018.

    CAS  Google Scholar 

  14. 14

    Wöhrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.; Kapernaum, N.; Litterscheidt, J.; Haenle, J. C.; Staffeld, P.; Baro, A.; Giesselmann, F.; Laschat, S. Discotic liquid crystals. Chem. Rev.2016, 116, 1139–1241.

    PubMed  Google Scholar 

  15. 15

    Broer, D. J.; Bastiaansen, C. M. W.; Debije, M. G.; Schenning, A. P. H. J. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew. Chem. Int. Ed.2012, 51, 7102–7109.

    CAS  Google Scholar 

  16. 16

    Concellón, A.; Schenning, A. P. H. J.; Romero, P.; Marcos, M.; Serrano, J. L. Size-selective adsorption in nanoporous polymers from coumarin photo-cross-linked columnar liquid crystals. Macromolecules2018, 51, 2349–2358.

    Google Scholar 

  17. 17

    Bogels, G. M.; Lugger, J. A. M.; Goor, O. J. G. M.; Sijbesma, R. P. Size-selective binding of sodium and potassium ions in nanoporous thin films of polymerized liquid crystals. Adv. Funct. Mater.2016, 26, 8023–8030.

    Google Scholar 

  18. 18

    Bhattacharjee, S.; Lugger, J. A. M.; Sijbesma, R. P. Tailoring pore size and chemical interior of near 1 nm sized pores in a nanoporous polymer based on a discotic liquid crystal. Macromolecules2017, 50, 2777–2783.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Sakamoto, T.; Ogawa, T.; Nada, H.; Nakatsuji, K.; Mitani, M.; Soberats, B.; Kawata, K.; Yoshio, M.; Tomioka, H.; Sasaki, T.; Kimura, M.; Henmi, M.; Kato, T. Development of nanostructured water treatment membranes based on thermotropic liquid crystals: molecular design of sub-nanoporous materials. Adv. Sci.2018, 5, 1700405.

    Google Scholar 

  20. 20

    Marets, N.; Kuo, D.; Torrey, J. R.; Sakamoto, T.; Henmi, M.; Katayama, H.; Kato, T. Highly efficient virus rejection with self-organized membranes based on a crosslinked bicontinuous cubic liquid crystal. Adv. Healthc. Mater.2017, 6, 1700252.

    Google Scholar 

  21. 21

    Feng, X. D.; Tousley, M. E.; Cowan, M. G.; Wiesenauer, B. R.; Nejati, S.; Choo, Y.; Noble, R. D.; Elimelech, M.; Gin, D. L.; Osuji, C. O. Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self-assembly. ACS Nano2014, 8, 11977–11986.

    CAS  PubMed  Google Scholar 

  22. 22

    Feng, X. D.; Nejati, S.; Cowan, M. G.; Tousley, M. E.; Wiesenauer, B. R.; Noble, R. D.; Elimelech, M.; Gin, D. L.; Osuji, C. O. Thin polymer films with continuous vertically aligned 1 nm pores fabricated by soft confinement. ACS Nano2016, 10, 150–158.

    CAS  PubMed  Google Scholar 

  23. 23

    Li, C.; Cho, J.; Yamada, K.; Hashizume, D.; Araoka, F.; Takezoe, H.; Aida, T.; Ishida, Y. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically. Nat. Commun.2015, 6, 8418–8427.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Miyajima, D.; Araoka, F.; Takezoe, H.; Kim, J.; Kato, K.; Takata, M.; Aida, T. Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture. Science2012, 336, 209–213.

    CAS  PubMed  Google Scholar 

  25. 25

    Kato, T.; Yoshio, M.; Ichikawa, T.; Soberats, B.; Ohno, H.; Funahashi, M. Transport of ions and electrons in nanostructured liquid crystals. Nat. Rev. Mater.2017, 2, 17001.

    Google Scholar 

  26. 26

    Nickmans, K.; Bogels, G. M.; Sanchez-Somolinos, C.; Murphy, J. N.; Leclere, P.; Voets, I. K.; Schenning, A. P. H. J. 3D orientational control in self-assembled thin films with sub-5 nm features by light. Small2017, 13, 1701043.

    Google Scholar 

  27. 27

    Kwon, K.; Park, K.; Jung, H. T. Long-range single domain array of a 5 nm pattern of supramolecules via solvent annealing in a double-sandwich cell. Nanoscale2018, 10, 8459–8470.

    CAS  PubMed  Google Scholar 

  28. 28

    Kwon, K.; Ok, J. M.; Kim, Y. H.; Kim, J. S.; Jung, W. B.; Cho, S. Y.; Jung, H. T. Direct observation of highly ordered dendrimer soft building blocks over a large area. Nano Lett.2015, 15, 7552–7557.

    CAS  PubMed  Google Scholar 

  29. 29

    Yoshio, M.; Kagata, T.; Hoshino, K.; Mukai, T.; Ohno, H.; Kato, T. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J. Am. Chem. Soc.2006, 128, 5570–5577.

    CAS  PubMed  Google Scholar 

  30. 30

    Lugger, J. A. M.; Mulder, D. J.; Bhattacharjee, S.; Sijbesma, R. P. Homeotropic self-alignment of discotic liquid crystals for nanoporous polymer films. ACS Nano2018, 12, 6714–6724.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Feng, X. D.; Kawabata, K.; Kaufman, G.; Elimelech, M.; Osuji, C. O. Highly selective vertically aligned nanopores in sustainably derived polymer membranes by molecular templating. ACS Nano2017, 11, 3911–3921.

    CAS  PubMed  Google Scholar 

  32. 32

    Xiong, J. F.; Luo, S. H.; Huo, J. P.; Liu, J. Y.; Chen, S. X.; Wang, Z. Y. Design, synthesis, and characterization of 1,3,5-tri(1H-benzo [d]imidazol-2-yl)benzene-based fluorescent supramolecular columnar liquid crystals with a broad mesomorphic range. J. Org. Chem.2014, 79, 8366–8373.

    CAS  PubMed  Google Scholar 

  33. 33

    Biedermann, F.; Schneider, H. Experimental binding energies in supramolecular complexes. Chem. Rev.2016, 116, 5216–5300.

    CAS  PubMed  Google Scholar 

  34. 34

    Beginn, U. Thermotropic columnar mesophases from N-H⋯O, and N⋯H-O hydrogen bond supramolecular mesogenes. Prog. Polym. Sci.2003, 28, 1049–1105.

    CAS  Google Scholar 

  35. 35

    Bogels, G. M.; van Kuringen, H. P. C.; Shishmanova, I. K.; Voets, I. K.; Schenning, A. P. H. J.; Sijbesma, R. P. Selective absorption of hydrophobic cations in nanostructured porous materials from crosslinked hydrogen-bonded columnar liquid crystals. Adv. Mater. Interfaces2015, 2, 1500022.

    Google Scholar 

  36. 36

    Pisula, W.; Kastler, M.; El Hamaoui, B.; Garcia-Gutierrez, M. C.; Davies, R. J.; Riekel, C.; Mullen, K. Dendritic morphology in homeotropically aligned discotic films. ChemPhysChem,2007, 8, 1025–1028.

    CAS  PubMed  Google Scholar 

  37. 37

    Pisula, W.; Tomović, Ž.; El Hamaoui, B.; Watson, M. D.; Pakula, T.; Müllen, K. Control of the homeotropic order of discotic hexa-peri-hexabenzocoronenes. Adv. Funct. Mater.2005, 15, 893–904.

    CAS  Google Scholar 

  38. 38

    Zhuang, Y.; Yu, F.; Chen, J.; Ma, J. Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: comparison of single-network and double-network hydrogels. J. Environ. Chem. Eng.2016, 4, 147–156.

    CAS  Google Scholar 

  39. 39

    Li, Y.; Du, Q.; Liu, T.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr. Polym.2013, 95, 501–507.

    CAS  PubMed  Google Scholar 

  40. 40

    Wang, G.; Garvey, C. J.; Zhao, H.; Huang, K.; Kong, L. Toward the fabrication of advanced nanofiltration membranes by controlling morphologies and mesochannel orientations of hexagonal lyotropic liquid crystals. Membranes (Basel)2017, 7, 37–57.

    Google Scholar 

  41. 41

    Stevens, D. M.; Shu, J. Y.; Reichert, M.; Roy, A. Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind. Eng. Chem. Res.2017, 56, 10526–10551.

    CAS  Google Scholar 

Download references


This work was financially supported by the National Key R&D Program of China (No. 2018YFB0703702) and the National Natural Science Foundation of China (No. 51725301). And the authors also gratefully acknowledge the scientists at beamline 1W2A at BSRF and at beamline BL16B1 at SSRF for their assistance on the synchrotron-radiation WAXS and MAXS experiments.

Author information



Corresponding authors

Correspondence to Zhi-Hao Shen or Xing-He Fan.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, A., Lyu, X., Pan, H. et al. Homeotropic Alignment and Selective Adsorption of Nanoporous Polymer Film Polymerized from Hydrogen-bonded Liquid Crystal. Chin J Polym Sci (2020). https://doi.org/10.1007/s10118-020-2431-9

Download citation


  • Liquid crystal
  • Hydrogen bonding
  • Homeotropic alignment
  • Nanoporous polymer film
  • Selective adsorption