Long-term Thermo-oxidative Degradation Modeling of a Carbon Fiber Reinforced Polyimide Composite: Multistep Degradation Behaviors and Kinetics


This study aims to disclose the thermo-oxidative degradation behaviors and kinetics of a carbon fiber reinforced polyimide (CFRPI) composite for modeling of the long-term degradation process. The degradation behaviors were revealed through off-gas products analysis, and the overall kinetic interpretation was achieved from study of the mass-loss curves recorded under dynamic conditions. It was found that thermo-oxidative degradation of the CFRPI composite was a multistep process, which included four main reaction steps. Since most kinetic analysis methods were derived from simple reactions described by a single kinetic triplet, they cannot be applied reliably to such a process. Therefore, we firstly separated the four overlapped reaction steps by peak fitting of derivative thermogravimetric curves using Frasier-Suzuki equation considering the asymmetrical nature of kinetic curves, and subsequently analyzed each individual reaction employing Friedman method and experimental master-plots method. Four sets of kinetic triplets were determined to characterize the entire degradation process. The validity of four corresponding kinetic triplets was confirmed by perfect simulation of mass-loss curves recorded at both dynamic conditions used in kinetic analysis and entirely different isothermal conditions. Finally, modeling of long-term aging at 400 °C of the CFRPI composite was successfully achieved based on these kinetic triplets. The predicted mass loss and flexural property correlated well with experimental results. This study can serve as a basis for rapid evaluation of the long-term durability of the CFRPI composite in various application environments.

This is a preview of subscription content, log in to check access.


  1. 1

    Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in polyimide-based materials for space applications. Adv. Mater.2019, 31, 15.

    Article  CAS  Google Scholar 

  2. 2

    Gong, C. L.; Li, Y. F.; Yang, H. X.; Wang, X. L.; Zhang, S. J.; Yang, S. Y. Characterization and thermal stability of PMR polyimides using 7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride as end caps. Chinese J. Polym. Sci.2011, 29, 741–749.

    CAS  Article  Google Scholar 

  3. 3

    Yu, P.; Wang, Y.; Yu, J. R.; Zhu, J.; Hu, Z. M. Synthesis and characterization of phenylethynyl-terminated polyimide oligomers derived from 2,3,3’,4’-diphenyl ether tetracarboxylic acid dianhydride and 3,4’-oxydianiline. Chinese J. Polym. Sci.2016, 34, 122–134.

    CAS  Article  Google Scholar 

  4. 4

    Meador, M. A. Recent advances in the development of processable high-temperature polymers. Annu. Rev. Mater. Sci.1998, 28, 599–630.

    CAS  Article  Google Scholar 

  5. 5

    Fan, W.; Li, J. L. Rapid evaluation of thermal aging of a carbon fiber laminated epoxy composite. Polym. Compos. 2014, 35, 975–984.

    CAS  Article  Google Scholar 

  6. 6

    Daghia, F.; Zhang, F.; Cluzel, C.; Ladeveze, P. Thermo-mechano-oxidative behavior at the ply’s scale: the effect of oxidation on transverse cracking in carbon-epoxy composites. Compos. Struct. 2015, 134, 602–612.

    Article  Google Scholar 

  7. 7

    Schoeppner, G. A.; Tandon, G. P.; Ripberger, E. R. Anisotropic oxidation and weight loss in PMR-15 composites. Compos. Part A- Appl. Sci. Manuf.2007, 38, 890–904.

    Article  CAS  Google Scholar 

  8. 8

    Chung, K.; Seferis, J. C.; Nam, J. D. Investigation of thermal degradation behavior of polymeric composites: prediction of thermal cycling effect from isothermal data. Compos. PartA-Appl. Sci. Manuf.2000, 31, 945–957.

    Article  Google Scholar 

  9. 9

    Tandon, G. P.; Ragland, W. R. Influence of laminate lay-up on oxidation and damage growth: isothermal aging. Compos. Part A-Appl. Sci. Manuf.2011, 42, 1127–1137.

    Article  CAS  Google Scholar 

  10. 10

    Tandon, G. P.; Pochiraju, K. V.; Schoeppner, G. A. Modeling of oxidative development in PMR-15 resin. Polym. Degrad. Stab.2006, 91, 1861–1869.

    CAS  Article  Google Scholar 

  11. 11

    Yu, Y. T.; Pochiraju, K. Modeling long-term degradation due to moisture and oxygen in polymeric matrix composites. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.0008, 988, 162–165.

    Article  CAS  Google Scholar 

  12. 12

    Tandon, G. P.; Pochiraju, K. V.; Schoeppner, G. A. Thermo-oxidative behavior of high-temperature PMR-15 resin and composites. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.2000, 498, 150–161.

    Article  CAS  Google Scholar 

  13. 13

    Upadhyaya, P.; Singh, S.; Roy, S. A mechanism-based multi-scale model for predicting thermo-oxidative degradation in high temperature polymer matrix composites. Compos. Sci. Technol.2011, 71, 1309–1315.

    CAS  Article  Google Scholar 

  14. 14

    Liavitskaya, T.; Vyazovkin, S. Discovering the kinetics of thermal decomposition during continuous cooling. Phys. Chem. Chem. Phys.2016, 18, 32021–32030.

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Muravyev, N. V.; Koga, N.; Meerov, D. B.; Pivkina, A. N. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide. Phys. Chem. Chem. Phys.2017, 19, 3254–3264.

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Devnani, G. L.; Sinha, S. Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated saccharum spontaneum (kans grass) fiber. Compos. Part B-Eng.2019, 166, 436–445.

    CAS  Article  Google Scholar 

  17. 17

    Pitchan, M. K.; Bhowmik, S.; Balachandran, M.; Abraham, M. Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nano composites. Compos. Part A-Appl. Sci. Manuf. 2016, 90, 147–160.

    CAS  Article  Google Scholar 

  18. 18

    Xiang, Z. D.; Jones, F. R. Thermal-degradation of an end-capped bismaleimide resin matrix (PMR-15) composite reinforced with pan-based carbon-fibers. Compos. Sci. Technol.1993, 47, 209–215.

    CAS  Article  Google Scholar 

  19. 19

    Gutierrez, O.; Palza, H. Effect of carbon nanotubes on thermal pyrolysis of high density polyethylene and polypropylene. Polym. Degrad. Stab.2015, 120, 122–134.

    CAS  Article  Google Scholar 

  20. 20

    Jovanovic, V.; Samarzija-Jovanovic, S.; Budinski-Simendic, J.; Markovic, G.; Marinovic-Cincovic, M. Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos. Part B-Eng.2019, 45, 333–340.

    Article  CAS  Google Scholar 

  21. 21

    Matykiewicz, D.; Barczewski, M.; Michalowski, S. Basalt powder as an eco-friendly filler for epoxy composites: thermal and thermo-mechanical properties assessment. Compos. Part B-Eng.2019, 164, 272–279.

    CAS  Article  Google Scholar 

  22. 22

    Nikolaidis, A. K.; Achilias, D. S. Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/organomo-dified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers2010, 10, 491.

    Article  CAS  Google Scholar 

  23. 23

    Sanchez-Jimenez, P. E.; Perez-Maqueda, L. A.; Perejon, A.; Criado, J. M. Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J. Phys. Chem. C2012, 116, 11797–11807.

    CAS  Article  Google Scholar 

  24. 24

    Motaung, T. E.; Saladino, M. L.; Luyt, A. S.; Martino, D. F. C. The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate. Compos. Sci. Technol.2012, 73, 34–39.

    CAS  Article  Google Scholar 

  25. 25

    Rajeshwari, P. Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. J. Therm. Anal. Calorim.2016, 123, 1523–1544.

    CAS  Article  Google Scholar 

  26. 26

    Majoni, S.; Chaparadza, A. Thermal degradation kinetic study of polystyrene/organophosphate composite. Thermochim. Acta2010, 662, 8–15.

    Article  CAS  Google Scholar 

  27. 27

    Mustata, F.; Tudorachi, N.; Rosu, D. Thermal behavior of some organic/inorganic composites based on epoxy resin and calcium carbonate obtained from conch shell of rapana thomasiana. Compos. Part B-Eng.2012, 43, 702–710.

    CAS  Article  Google Scholar 

  28. 28

    Vyazovkin, S. Isoconversional kinetics of polymers: the decade past. Macromol. Rapid. Commun.2017, 38, 21.

    Article  CAS  Google Scholar 

  29. 29

    Garcia-Garrido, C.; Perez-Maqueda, L. A.; Criado, J. M.; Sanchez-Jimenez, P. E. Combined kinetic analysis of multistep processes of thermal decomposition of polydimethylsiloxane silicone. Polymer2010, 153, 558–564.

    Article  CAS  Google Scholar 

  30. 30

    Liu, Y.; Mo, S.; He, M. H.; Zhai, L.; Xu, C. H.; Fan, L. Phenylethynyl-terminated oligoimides based on bis(p-aminophenoxy)dimethyl silane: effect of siloxane structure on processability and thermal stability. High. Perform. Polym.2019, 31, 651–661.

    CAS  Article  Google Scholar 

  31. 31

    Perejon, A.; Sanchez-Jimenez, P. E.; Criado, J. M.; Perez-Maqueda, L. A. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J. Phys. Chem. B2011, 115, 1780–1791.

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Perez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta2011, 520, 1–19.

    CAS  Article  Google Scholar 

  33. 33

    Naebe, M.; Abolhasani, M. M.; Khayyam, H.; Amini, A.; Fox, B. Crack damage in polymers and composites: a review. Polym. Rev.2016, 56, 31–69.

    CAS  Article  Google Scholar 

  34. 34

    Nishikawa, K.; Ueta, Y.; Hara, D.; Yamada, S.; Koga, N. Kinetic characterization of multistep thermal oxidation of carbon/carbon composite in flowing air. J. Therm. Anal. Calorim.2017, 128, 891–906.

    CAS  Article  Google Scholar 

  35. 35

    Khawam, A.; Flanagan, D. R. Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B2006, 110, 17315–17328.

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J. Polym. Sci. Polym. Symp.1964, 183–195.

    Google Scholar 

  37. 37

    Koga, N.; Kameno, N.; Tsuboi, Y.; Fujiwara, T.; Nakano, M.; Nishikawa, K.; Murata, A. I. Multistep thermal decomposition of granular sodium perborate tetrahydrate: a kinetic approach to complex reactions in solid-gas systems. Phys. Chem. Chem. Phys. 2010, 20, 12557–12573.

    Article  Google Scholar 

  38. 38

    Koga, N. Ozawa’s kinetic method for analyzing thermoanalytical curves history and theoretical fundamentals. J. Therm. Anal. Calorim.2019, 113, 1527–1541.

    Article  CAS  Google Scholar 

  39. 39

    Stanko, M.; Stommel, M. Kinetic prediction of fast curing polyurethane resins by model-free isoconversional methods. Polymers2010, 10, 698.

    Article  CAS  Google Scholar 

  40. 40

    Adamczak, A. D.; Spriggs, A. A.; Fitch, D. M.; Awad, W.; Wilkie, C. A.; Grunlan, J. C. Thermal degradation of high-temperature fluorinated polyimide and its carbon fiber composite. J. Appl. Polym. Sci.2010, 115, 2254–2261.

    CAS  Article  Google Scholar 

  41. 41

    Camino, G.; Lomakin, S. M.; Lageard, M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer2002, 43, 2011–2015.

    CAS  Article  Google Scholar 

  42. 42

    Turk, M. J.; Ansari, A. S.; Alston, W. B.; Gahn, G. S.; Frimer, A. A.; Scheiman, D. A. Evaluation of the thermal oxidative stability of polyimides via TGA techniques. J. Polym. Sci, Part A: Polym. Chem. 1999, 37, 3943–3956.

    CAS  Article  Google Scholar 

  43. 43

    Nair, S.; Aswathy, U. V.; Mathew, A.; Raghavan, R. Studies on the thermal properties of silicone polymer based thermal protection systems for space applications. J. Therm. Anal. Calorim.2017, 128, 1731–1741.

    CAS  Article  Google Scholar 

  44. 44

    Butnaru, I.; Varganici, C. D.; Pinteala, M.; Lehner, S.; Bruma, M.; Gaan, S. Thermal decomposition of polyimides containing phosphine-oxide units. J. Anal. Appl. Pyrolysis2018, 134, 254–264.

    CAS  Article  Google Scholar 

  45. 45

    Guo, W. M.; Xiao, H. N. Mechanisms and modeling of oxidation of carbon felt/carbon composites. Carbon2007, 45, 1058–1065.

    CAS  Article  Google Scholar 

  46. 46

    Colin, X.; Marais, C.; Verdu, J. Kinetic modelling of the stabilizing effect of carbon fibres on thermal ageing of thermoset matrix composites. Compos. Sci. Technol.2005, 65, 117–127.

    CAS  Article  Google Scholar 

  47. 47

    Colin, X.; Verdu, J. Strategy for studying thermal oxidation of organic matrix composites. Compos. Sci. Technol.2005, 65, 411–419.

    CAS  Article  Google Scholar 

  48. 48

    Svoboda, R.; Malek, J. Applicability of Fraser-Suzuki function in kinetic analysis of complex crystallization processes. J. Therm. Anal. Calorim.2013, 111, 1045–1056.

    CAS  Article  Google Scholar 

  49. 49

    Garcia-Garrido, C.; Sanchez-Jimenez, P. E.; Perez-Maqueda, L. A.; Perejon, A.; Criado, J. M. Combined TGA-MS kinetic analysis of multistep processes. Thermal decomposition and ceramification of polysilazane and polysiloxane preceramic polymers. Phys. Chem. Chem. Phys.2016, 18, 29348–29360.

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Perondi, D.; Broetto, C. C.; Dettmer, A.; Wenzel, B. M.; Godinho, M. Thermal decomposition of polymeric resin [(C29H24N2O5)n]: kinetic parameters and mechanisms. Polym. Degrad. Stab. 2012, 97, 2110–2117.

    CAS  Article  Google Scholar 

  51. 51

    Zhang, M.; Sun, B. Z.; Gu, B. H. Accelerated thermal ageing of epoxy resin and 3-D carbon fiber/epoxy braided composites. Compos. PartA-Appl. Sci. Manuf.2016, 85, 163–171.

    Article  CAS  Google Scholar 

  52. 52

    Sang, L.; Wang, C.; Wang, Y. K.; Wei, Z. Y. Thermo-oxidative ageing effect on mechanical properties and morphology of short fibre reinforced polyamide composites-comparison of carbon and glass fibres. RSC Adv.2017, 7, 43334–43344.

    CAS  Article  Google Scholar 

Download references


The authors express their sincere thanks to Prof. Caihong Xu for her assistance on the synthesis of siloxane-containing polyimide resin.

Author information



Corresponding author

Correspondence to Lin Fan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, X., Mo, S. et al. Long-term Thermo-oxidative Degradation Modeling of a Carbon Fiber Reinforced Polyimide Composite: Multistep Degradation Behaviors and Kinetics. Chin J Polym Sci (2020). https://doi.org/10.1007/s10118-020-2425-7

Download citation


  • Polyimide composite
  • Thermo-oxidative degradation
  • Multistep process
  • Kinetics
  • Long-term aging modeling