Skip to main content
Log in

Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stereoselectivity better than those of traditional metallocene and Ziegler-Natta catalysts in diene polymerization. In this work, a series of neodymium organic sulfonate complexes, Nd(CF3SO3)3·xH2yL (x, y: the coordination number; L refers to an organic electron donating ligand, such as acetylacetone (acac), iso-octyl alcohol (IAOH), tributyl phosphate (TBP), etc.), have been synthesized to form the cationic active species in the presence of alkylaluminum such as Al(i-Bu)3, AlEt3, and Al(i-Bu)2H, which display high activities and distinguishing cis-1,4 selectivities (up to 99.9%) for the polymerization of butadiene. The microstructures, yield, molecular weight, and molecular weight distribution of the resulting polymer are well controlled by adjusting electronegativity/steric hindrance of the complexes. In addition, the kinetics, active species, and the possible process of polymerization are also discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKnight, A. L.; Waymouth, R. M. Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem. Rev. 1998, 98, 2587–2598.

    Article  CAS  PubMed  Google Scholar 

  2. Gibson, V. C.; Spitzmesser, S. K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev. 2003, 103, 283–315.

    Article  CAS  PubMed  Google Scholar 

  3. Coates, G. W.; Waymouth, R. M. Enantioselective cyclopolymerization: Optically active poly(methylene-1,3-cyclopentane). J. Am. Chem. Soc. 1991, 113, 6270–6271.

    Article  CAS  Google Scholar 

  4. Schneider, N.; Prosenc, M. H.; Brintzinger, H. H. Cyclopenta[l]phenanthrene titanium trichloride derivatives: Syntheses, crystal structure and properties as catalysts for styrene polymerization. J. Organomet. Chem. 1997, 545, 291–295.

    Article  Google Scholar 

  5. Döhring, A.; Jensen, V. R.; Jolly, P. W.; Thiel, W.; Weber, J. C. Donor-ligand-substituted cyclopentadienylchromium(III) complexes: A new class of alkene polymerization catalyst. 2. phosphinoalkyl-substituted systems. Organometallics 2001, 20, 2234–2245.

    Article  CAS  Google Scholar 

  6. Busico, V.; Cipullo, R.; Kretschmer, W. P.; Talarico, G.; Vacatello, M.; Castelli, V. V. A. “Oscillating” metallocene catalysts: How do they oscillate. Angew. Chem. Int. Ed. 2002, 41, 505–508.

    Article  CAS  Google Scholar 

  7. Zhang, H.; Ma, J.; Qian, Y. L.; Huang, J. L. Synthesis and characterization of nitrogen-functionalized cyclopentadienylchromium complexes and their use as catalysts for olefin polymerization. Organometallics 2004, 23, 5681–5688.

    Article  CAS  Google Scholar 

  8. Hou, Z. M.; Kaita, S.; Wakatsuki, Y. Novel polymerization and copolymerization of ethylene, styrene, and/or butadiene by new organolanthanide-based catalysts. Pure Appl. Chem. 2001, 73, 291–294.

    Article  CAS  Google Scholar 

  9. Kaita, S.; Yamanaka, M.; Horiuchi, A. C.; Wakatsuki, Y. Butadiene polymerization catalyzed by lanthanide metallocenealkylaluminum complexes with cocatalysts: Metal-dependent control of 1,4-cis/trans stereoselectivity and molecular weight. Macromolecules 2006, 39,1359–1363.

    Google Scholar 

  10. Zhang, L. X.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. M. Cationic alkyl rare-earth metal complexes bearing an ancillary bis(phosphinophenyl)amido ligand: A catalytic system for living cis-1,4-polymerization and copolymerization of isoprene and butadiene. Angew. Chem. Int. Ed. 2007, 46, 1909–1913.

    Article  CAS  Google Scholar 

  11. Gao, W.; Cui, D. M. Highly cis-1,4 selective polymerization of dienes with homogeneous Ziegler-Natta catalysts based on NCN-pincer rare earth metal dichloride precursors. J. Am. Chem. Soc. 2008, 130, 4984–4991.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, D.; Li, S. H.; Liu, X. L.; Gao, W.; Cui, D. M. Thiophene-NPN ligand supported rare-earth metal bis(alkyl) complexes. Synthesis and catalysis toward highly trans-1,4 selective polymerization of butadiene. Organometallics 2008, 27, 6531–6538.

    CAS  Google Scholar 

  13. Pan, W.; Chen, H.; Sun, R.; Gong, D.; Jia, X.; Hu, Y.; Zhang, X. Highly 1,2 regio- and stereoselective polymerization of 1,3-butadiene initiated by iron catalysts with pyridinyl phosphate. Ind. Eng. Chem. Res. 2016, 55, 7580–7586.

    Article  CAS  Google Scholar 

  14. Cariou, R.; Chirinos, J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Elsegood, M. R. J. 1,3-Butadiene polymerization by bis(benzimidazolyl)amine metal complexes: Remarkable microstructural control and a protocol for in-reactor blending of trans-1,4-, cis-1,4-, and cis-1,4-co-1,2-vinylpolybutadiene. Macromolecules 2009, 42,1443–1444.

    Google Scholar 

  15. Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3-dienes. ACS Macro Lett. 2016, 5, 777–780.

    Article  CAS  Google Scholar 

  16. Pan, L.; Zhang, K.; Nishiura, M.; Hou, Z. M. Chain-shuttling polymerization at two different scandium sites: Regio- and stereospecific “one-pot” block copolymerization of styrene, isoprene, and butadiene. Ange w. Chem. Int. Ed. 2011, 50, 12012–12015.

    Article  CAS  Google Scholar 

  17. Roitershtein, D. M.; Vinogradov, A. A.; Vinogradov, A. A.; Lyssenko, K. A.; Nelyubina, Y. V.; Anan’ev, I. V.; Nifant’ev, I. E.; Yakovlev, V. A.; Kostitsyna, N. N. Di- and triphenylacetates of lanthanum and neodymium. Synthesis, structural diversity, and application in diene polymerization. Organometallics 2013, 32, 1272–1286.

    CAS  Google Scholar 

  18. Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Stereoselective copolymerization of butadiene and functionalized 1,3-dienes with neodymium-based catalysts. Macromolecules 2017, 50, 8464–8468.

    Article  CAS  Google Scholar 

  19. Martinez-Arripe, E.; Jean-Baptiste-dit-Dominique, F.; Auffrant, A.; Le Goff, X. F.; Thuilliez, J.; Nief, F. Synthesis and characterization of bidentate rare-earth iminophosphorane o-aryl complexes and their behavior as catalysts for the polymerization of 1,3-butadiene. Organometallics 2012, 31, 4854–4861.

    Article  CAS  Google Scholar 

  20. Deacon, G. B.; Harika, R.; Junk, P. C.; Skelton, B. W.; White, A. H. Structural versatility in hydrated rare earth(III) 1,2-benzenedisulfonates. New J. Chem. 2007, 31, 634–645.

    Article  CAS  Google Scholar 

  21. Chen, X. L.; Lei, P.; Qiao, Q. L. Synthesis and characterization of some hydrous TPPTS Ln complexes (Ln = Sc, Y, La, Nd, Sm, Gd, Ho; and TPPTS = TRIS (m-sulfonatophenyl) phosphine). Polyhedron 1998, 17, 1381–1385.

    Article  CAS  Google Scholar 

  22. Kawada, A.; Yasuda, K.; Abe, H.; Harayama, T. Rare earth metal trifluoromethanesulfonates catalyzed benzyl-etherification. Chem. Pharm. Bull. 2002, 50, 380–383.

    Article  CAS  PubMed  Google Scholar 

  23. WeÏwer, M.; Coulombel, L.; Dunach, E. Regioselective indium( III) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun. 2006, 3, 332–334.

    Article  Google Scholar 

  24. Parac-Vogt, T. N.; Binnemans, K. Lanthanide(III) nosylates as new nitration catalysts. Tetrahedron Lett. 2004, 45, 3137–3139.

    Article  CAS  Google Scholar 

  25. Zhu, W. P.; Tong, X. W.; Shen, Z. Q. Ring-opening polymerization of e-caprolactone catalyzed by rare earth trifluoromethanesulfonate [Ln(OTf)3] catalysts. Chem. J. Chinese U. 2007, 28, 1186–1188.

    CAS  Google Scholar 

  26. Ren, C. Y.; Li, G. L.; Dong, W. M.; Jiang, L. S.; Zhang, X. Q.; Wang, F. S. Soluble neodymium chloride 2-ethylhexanol complex as a highly active catalyst for controlled isoprene polymerization. Polymer 2007, 48, 2470–2474.

    Article  CAS  Google Scholar 

  27. Kaita, S.; Doi, Y.; Kaneko, K.; Horiuchi, A. C.; Wakatsuki, Y. An efficient gadolinium metallocene-based catalyst for the synthesis of isoprene rubber with perfect 1,4-c/s microstructure and marked reactivity difference between lanthanide metallocenes toward dienes as probed by butadiene-isoprene copolymerization catalysis. Macromolecules 2004, 37, 5860–5862.

    Article  CAS  Google Scholar 

  28. Dai, Q.; Zhang, X.; Hu, Y.; He, J.; Shi, C.; Li, Y.; Bai, C. Regulation of the cis-1,4-and trans-1,4-polybutadiene multiblock copolymers via chain shuttling polymerization using a ternary neodymium organic sulfonate catalyst. Macromolecules 2017, 50, 7887–7894.

    Article  CAS  Google Scholar 

  29. Harrowfield, J. Structure and stereochemistry in ‘f-block’ complexes of high coordination number. VIII. The [M(unidentate)9] system. Crystal structures of [M(OH2)9] [CF3SO3]3, M = La, Gd, Lu Y. Aust. J. Chem. 1983, 36, 483–492.

    Article  CAS  Google Scholar 

  30. Wen, J.; Zhang, X.; Dai, Q. Synthesis of polybutadienes with controllable microstructure by a novel binary Nd(3-NBSO3)3/alkylaluminum catalyst system. Chinese J. Polym. Sci. 2015, 33, 475–480.

    Article  CAS  Google Scholar 

  31. Friebe, L.; Windisch, H.; Nuyken, O.; Obrecht, W. Polymerization of 1,3-butadiene initiated by neodymium versatate/triisobutylaluminum/ethylaluminum sesquichloride: Impact of the alkylaluminum cocatalyst component. J. Macromol. Sci. Part A Pure Appl. Chem. 2004, 41, 245–256.

    Article  CAS  Google Scholar 

  32. Quirk, R. P.; Kells, A. M.; Yunlu, K.; Cuif, J. P. Butadiene polymerization using neodymium versatate-based catalysts: Catalyst optimization and effects of water and excess versatic acid. Polymer 2000, 41, 5903–5908.

    Article  CAS  Google Scholar 

  33. Carbonaro, A., Ferraro, D. and Bruzzone, M., 1988, U.S. Pat., 4,736,001.

  34. Oehme, A.; Gebauer, U.; Gehrke, K.; Lechner, M. D. The influence of ageing and polymerization conditions on the polymerization of butadiene using a neodymium catalyst system. Die Angew. Makromol. Chem. 1996, 235, 121–130.

    Article  CAS  Google Scholar 

  35. Hsieh, H. L.; Yeh, G. H. C. Mechanism of rare-earth catalysis in coordination polymerization. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 456–463.

    Article  CAS  Google Scholar 

  36. Annunziata, L.; Pragliola, S.; Pappalardo, D.; Tedesco, C.; Pellecchia, C. New (anilidomethyl)pyridine titanium(IV) and zirconium( IV) catalyst precursors for the highly chemo- and stereoselective cis-1,4-polymerization of 1,3-butadiene. Macromolecules 2011, 44, 1934–1941.

    Article  CAS  Google Scholar 

  37. Liu, B.; Wang, X.; Pan, Y.; Lin, F.; Wu, C.; Qu, J.; Luo, Y.; Cui, D. Unprecedented 3,4-isoprene and cis-1,4-butadiene copolymers with controlled sequence distribution by single yttrium cationic species. Macromolecules 2014, 47, 8524–8530.

    Article  CAS  Google Scholar 

  38. Appukuttan, V.; Zhang, L.; Ha, C. S.; Kim, I. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer 2009, 50, 1150–1158.

    Article  CAS  Google Scholar 

  39. Gong, D.; Wang, B.; Bai, C.; Bi, J.; Wang, F.; Dong, W.; Zhang, X.; Jiang, L. Metal dependent control of cis-/trans-1,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[1-(iminophenyl) ethyl]pyridine. Polymer 2009, 50, 6259–6264.

    Article  CAS  Google Scholar 

  40. Liu, J.; Fan, X.; Min, X.; Zhu, X.; Zhao, N.; Wang, Z. Synthesis of high cis-1,4 polybutadiene with narrow molecular weight distribution via a neodymium-based binary catalyst. RSC Adv. 2018, 8, 21926–21932.

    Article  CAS  Google Scholar 

  41. Iovu, H.; Hubca, G.; Simionescu, E.; Badea, E.; Hurst, J. S. Butadiene polymerisation using binary neodymium-based catalyst systems. The effect of catalyst preparation. Eur. Polym. J. 1997, 33, 811–814.

    CAS  Google Scholar 

  42. Iovu, H.; Hubca, G.; Racoti, D.; Hurst, J. S. Modelling of the butadiene and isoprene polymerization processes with a binary neodymium-based catalyst. Eur. Polym. J. 1999, 35, 335–344.

    Article  CAS  Google Scholar 

  43. Kwag, G. A highly reactive and monomeric neodymium catalyst. Macromolecules 2002, 35, 4875–4879.

    Article  CAS  Google Scholar 

  44. Furukawa, J. Mechanism of diene polymerization. Pure. Appl. Chem. 1975, 42, 495–508.

    Article  CAS  Google Scholar 

  45. Loughmari, S.; Hafid, A.; Bouazza, A.; Bouadili, A. E.; Zinck, P.; Visseaux, M. Highly stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst: Access to bio-sourced elastomers. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2898–2905.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Natural Science Foundation of China (Nos. 51473156 and 51873203), Key Projects of Jilin Province Science and Technology Development Plan (Nos. 2018020108GX and 20160204028GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-Quan Dai or Chen-Xi Bai.

Electronic supplementary material

10118_2019_2196_MOESM1_ESM.pdf

Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JY., Cui, L., Qi, YL. et al. Neodymium Organic Sulfonate Complexes: Tunable Electronegativity/Steric Hindrance and Application in Controlled Cis-1,4-polymerization of Butadiene. Chin J Polym Sci 37, 208–215 (2019). https://doi.org/10.1007/s10118-019-2196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2196-1

Keywords

Navigation