Skip to main content
Log in

Study on Phase Transformation Behavior of Strain-induced PLLA Mesophase by Polarized Infrared Spectroscopy

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The structural transformation of mesophase to crystalline phase of strain-induced poly(L-lactic acid) has been investigated by differential scanning calorimetry (DSC) and in situ temperature dependent polarized Fourier transform infrared (FTIR) spectroscopy. It is found that, as the drawing temperature increases, melting of strain-induced mesophase in the heating process can remarkably interfere the crystallization behavior subsequently. Coupling with in situ polarized FTIR, from 60 °C to 76 °C, the mesophase melts partially rather than completely melting, and changes immediately to three-dimensional ordered structure. Of particular note, through monitoring the subtle spectral change in the critical phase transformation temperature from 60 °C to 64 °C, it is clearly demonstrated that relaxation of oriented amorphous chains initially takes place prior to the melting of mesophase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegra, G. in “Interphases and Mesophases in Polymer Crystallization ИГ, Springer, 2005.

    Book  Google Scholar 

  2. Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004, 305, 1598–1601.

    Article  CAS  PubMed  Google Scholar 

  3. Bates, F. S. Polymer-polymer phase behavior. Science 1991, 251, 898–905.

    Article  CAS  PubMed  Google Scholar 

  4. De Rosa, C.; Auriemma, F. R.; Giusto, G. O.; De Ballesteros, R. Helical mesophase of syndioitactic polypropylene in copolymers with 1-hexene and 1-octene. Macromolecules 2010, 43, 9802–9809.

    Article  CAS  Google Scholar 

  5. Androsch, R.; Di Lorenzo, M. L.; Schick, C.; Wunderlich, B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 2010, 51, 4639–4662.

    Article  CAS  Google Scholar 

  6. De Rosa, C.; Auriemma, F.; Di Girolamo, R.; Romano, L. M.; De Luca, R. A new mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 2010, 43, 8559–8569.

    Article  CAS  Google Scholar 

  7. Mileva, D.; Androsch, R.; Zhuravlev, E.; Schick, C. Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 2009, 42, 7275–7278.

    Article  CAS  Google Scholar 

  8. Androsch, R. In situ atomic force microscopy of the mesomorphic monoclinic phase transition in isotactic polypropylene. Macromolecules 2008, 41, 533–535.

    Article  CAS  Google Scholar 

  9. Welsh, G. E.; Blundell, D. J.; Windle, A. H. Transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN). J. Mater. Sci. 2000, 35, 5225–5240.

    Article  CAS  Google Scholar 

  10. Cocca, M.; Androsch, R.; Righetti, M. C.; Malinconico, M.; Di Lorenzo, M. L. Conformationally disordered crystals and their influence on material properties: The cases of isoitactic polypropylene, isoitactic poly(1-butene), and poly(L-lactic acid). J. Mol. Struct. 2014,1078, 114–132.

  11. Chen, C. Y.; Yang, C. F.; Jeng, U. S.; Su, A. C. Intrinsic metastability of the α′ phase and its partial transformation into a crystals during isothermal cold-crystallization of poly(Llactide). Macromolecules 2014, 47, 5144–5151.

    Article  CAS  Google Scholar 

  12. Lan, Q.; Li, Y.; Chi, H. Highly enhanced mesophase formation in glassy poly(L-lactide) at low temperatures by low-pressure CO2 that provides moderately increased molecular mobility. Macromolecules 2016, 49, 2262–2271.

    Article  CAS  Google Scholar 

  13. Androsch, R.; Di Lorenzo, M. L. Effect of molar mass on the α′/α-transition in poly (L-lactic acid). Polymer 2017, 114, 144–148.

    Article  CAS  Google Scholar 

  14. Su, F.; Li, X.; Zhou, W.; Zhu, S.; Ji, Y.; Wang, Z.; Qi, Z.; Li, L. Direct formation of isotactic poly (1-butene) form I crystal from memorized ordered melt. Macromolecules 2013, 46, 7399–7405.

    Article  CAS  Google Scholar 

  15. Zhang, B.; Chen, J.; Cui, J.; Zhang, H.; Ji, F.; Zheng, G.; Heck, B.; Reiter, G.; Shen, C. effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules 2012, 45, 8933–8937.

    Article  CAS  Google Scholar 

  16. Natta, G.; Peraldo, M.; Corradini, P. Smectic mesomorphic form of isotactic polypropylene. Rend. Accad. Naz. Lincei 1959, 26, 14–17.

    CAS  Google Scholar 

  17. Natta, G.; Corradini, P. Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl. 1960, 15, 40–51.

    Article  CAS  Google Scholar 

  18. Farrow, G. Measurement of the smectic content in undrawn polypropylene filaments. J. Appl. Polym. Sci. 1965, 9, 1227–1232.

    Article  CAS  Google Scholar 

  19. Miller, R. L. On the existence of near-range order in isotactic polypropylenes. Polymer 1960,1, 135–143.

    Google Scholar 

  20. Hosemann, R. Paracrystalline fine structure of natural and synthetic proteins Visual method for the determination of the oscillation tensors of the cell edges. Acta Crystallogr. 1951, 4, 520–530.

    Article  Google Scholar 

  21. Bodor, G.; Grell, M.; Kallo, A. Determination of the crystallinity of polypropylene. Faserforsch Textiltech. 1964, 15, 527–532.

    CAS  Google Scholar 

  22. Grebowicz, J.; Lau, S. F.; Wunderlich, B. The thermal properties of polypropylene. J. Polym. Sci., Part C: Polym. Sym. 1984, 71, 19–37.

    CAS  Google Scholar 

  23. Corradini, P.; Petraccone, V.; De Rosa, C.; Guerra, G. On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules 1986,19, 2699–2703.

    Article  CAS  Google Scholar 

  24. Qiu, J.; Wang, Z.; Yang, L.; Zhao, J.; Niu, Y.; Hsiao, B. S. Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer 2007, 48, 6934–6947.

    Article  CAS  Google Scholar 

  25. Koerner, H.; Luo, Y.; Li, X.; Cohen, C.; Hedden, R. C.; Ober, C. K. Structural studies of extension-induced mesophase formation in poly(diethylsiloxane) elastomers: In situ synchrotron WAXS and SAXS. Macromolecules 2003, 36,1975–1981.

    Article  CAS  Google Scholar 

  26. Ran, S.; Wang, Z.; Burger, C.; Chu, B.; Hsiao, B. S. Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film. Macromolecules 2002,35, 10102–10107.

    Google Scholar 

  27. Carr, P. L.; Nicholson, T. M.; Ward, I. M. Mesophase structures in poly(ethylene terephthalate), poly(ethylene naphthalate) and poly(ethylene naphthalate bibenzoate). Polym. Adv. Technol 1997, 8, 592–600.

    Article  CAS  Google Scholar 

  28. Garcia Gutiérrez, M. C.; Karger-Kocsis, J.; Riekel, C. Cold drawing-induced mesophase in amorphous poly(ethylene naphthalate) revealed by X-ray microdiffraction. Macromolecules 2002, 35, 7320–7325.

    Article  CAS  Google Scholar 

  29. Dorgan, J. Polylactic acid: Properties and prospects of an environmentally benign plastic from renewable resources. Macromol. Symp. 2001, 175, 145–149.

    Article  Google Scholar 

  30. Gross, R. A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803–807.

    Article  CAS  PubMed  Google Scholar 

  31. Pan, P.; Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009, 34, 605–640.

    Article  CAS  Google Scholar 

  32. De Santis, P.; Kovacs, J. Molecular conformation of poly(Slactic acid). Biopolymers 1968, 6,299–306.

    Article  PubMed  Google Scholar 

  33. Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; ten Brinke, G.; Zugenmaier, P. Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 1990, 23, 634–642.

    Article  CAS  Google Scholar 

  34. Kalb, B.; Pennings, A. J. General crystallization behaviour of poly(L-lactic acid). Polymer 1980, 21, 607–612.

    Article  CAS  Google Scholar 

  35. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. The frustrated structure of poly(L-lactide). Polymer 2000, 41, 8921–8930.

    Article  CAS  Google Scholar 

  36. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000, 41, 8909–8919.

    Article  CAS  Google Scholar 

  37. Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly (Llactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012–8021.

    Article  CAS  Google Scholar 

  38. Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 2010, 43, 1488–1498.

    Article  CAS  Google Scholar 

  39. Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Rochas, C. New insights on the strain-induced mesophase of poly(D, L-lactide): In situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 2010, 43, 7228–7237.

    Article  CAS  Google Scholar 

  40. Zhang, J.; Duan, Y.; Domb, A. J.; Ozaki, Y. PLLA mesophase and its phase transition behavior in the PLLA-PEG-PLLA copolymer as revealed by infrared spectroscopy. Macromolecules 2010, 43,4240–4246.

    Article  CAS  Google Scholar 

  41. Wasanasuk, K.; Tashiro, K. Structural regularization in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle Xray scatterings. Macromolecules 2011, 44, 9650–9660.

    Article  CAS  Google Scholar 

  42. Wasanasuk, K.; Tashiro, K. Theoretical and experimental evaluation of crystallite moduli of various crystalline forms of poly(L-lactic acid). Macromolecules 2012, 45, 7019–7026.

    Article  CAS  Google Scholar 

  43. Lv, R.; Na, B.; Tian, N.; Zou, S.; Li, Z.; Jiang, S. Mesophase formation and its thermal transition in the stretched glassy polylactide revealed by infrared spectroscopy. Polymer 2011, 52, 4979–4984.

    Article  CAS  Google Scholar 

  44. Hu, J.; Zhang, T.; Gu, M.; Chen, X.; Zhang, J. Spectroscopic analysis on cold drawing-induced PLLA mesophase. Polymer 2012, 53,4922–4926.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Natural Science Foundation of China (Nos. 21774068 and 21704053), and Natural Science Foundation of Shandong Province (No. ZR2017BB069) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Han, LL., Zhang, TP. et al. Study on Phase Transformation Behavior of Strain-induced PLLA Mesophase by Polarized Infrared Spectroscopy. Chin J Polym Sci 37, 253–257 (2019). https://doi.org/10.1007/s10118-019-2184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2184-5

Keywords

Navigation