Skip to main content
Log in

Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The structure and kinetics of the complex formed by hyaluronic acid (HA) and poly(L-lysine) (PLL) were studied by time-resolved laser light scattering, TEM, and AFM. Because HA has a hydrophilic backbone, the complexes formed by HA and PLL are different from those formed by oppositely charged polyelectrolytes both having hydrophobic backbones. Instead of forming strong aggregates and even precipitates, the complex in the presence of excess HA is stable in the studied time period. More importantly, the complex spontaneously forms core-corona structure by the rearrangement of HA chains. The core is composed of complex rich of PLL and the corona is mainly HA. Further analysis shows that the hydrogen bond formed by HA creates a barrier hindering the further relaxation of HA chains. The automatic formation of core-corona structure by PLL/HA is helpful not only to understand the relaxation of polyelectrolyte in complex, but also to develop drug carriers with desirable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izumrudov, V. A.; Galaev, I. Y.; Mattiasson, B. Polyelectrolyte-potential for bioseparation. Bioseparation 1998, 7(4–5), 207–220.

    Article  CAS  PubMed  Google Scholar 

  2. Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41(11), 2301–2324.

    Article  CAS  PubMed  Google Scholar 

  3. Savage, N.; Diallo, M. S. Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 2005, 7(4–5), 331–342.

    Article  CAS  Google Scholar 

  4. Zhao, Q.; Zhang, P.; Antonietti, M.; Yuan, J. Poly(ionic liquid) complex with spontaneous micro-/mesoporosity: template-free synthesis and application as catalyst support. J. Am. Chem. Soc. 2012, 134(29), 11852–11855.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, C.; Niu, L.; Yan, J. J.; Liu, J.; Luo, Y.; Liang, D. H. Structure and stability of the complex formed by oligonucleotides. Phys. Chem. Chem. Phys. 2012, 14(20), 7352–7359.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, J. H.; Liu, J.; Shi, T.; Xia, Y. Q.; Luo, Y.; Liang, D. H. Phase separation of siRNA-polycation complex and its effect on transfection efficiency. Soft Matter 2013, 9(7), 2262–2268.

    Article  CAS  Google Scholar 

  7. Nomoto, T.; Fukushima, S.; Kumagai, M.; Machitani, K.; Arnida; Matsumoto, Y.; Oba, M.; Miyata, K.; Osada, K.; Nishiyama, N.; Kataoka, K. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat. Commun. 2014, 5, 3545.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, C.; Niu, L.; Pan, W.; Zhou, J. H.; Lv, H.; Cheng, J. J.; Liang, D. H. Long-term kinetics of DNA interacting with polycations. Polymer 2014, 55(10), 2464–2471.

    Article  CAS  Google Scholar 

  9. Lee, Y.; Kataoka, K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 2009, 5(20), 3810–3817.

    Article  CAS  Google Scholar 

  10. Oh, K. T.; Bronich, T. K.; Bromberg, L.; Hatton, T. A.; Kabanov, A. V. Block ionomer complexes as prospective nanocontainers for drug delivery. J. Control. Release 2006, 115(1), 9–17.

    Article  CAS  PubMed  Google Scholar 

  11. Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

    Article  CAS  PubMed  Google Scholar 

  12. Yue, Y.; Wu, C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 2013, 1(2), 152–170.

    Article  CAS  Google Scholar 

  13. Aliabadi, H. M.; Landry, B.; Sun, C.; Tang, T.; Uludag, H. Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials 2012, 33(8), 2546–2569.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, J. H.; Wen, H.; Su, C. C.; Niu, L.; Liang, D. H. Complexation between DNA and peptides with precisely controlled charge density and distribution. Chinese J. Polym. Sci. 2014, 32(11), 1460–1468.

    Article  CAS  Google Scholar 

  15. Niu, L.; Yan, J. J.; Yang, X. Y.; Burger, C.; Rong, L. X.; Hsiao, B.; Liang, D. H. Complexation of DNA with cationic surfactants as studied by small-angle X-ray scattering. Sci. China Chem. 2014, 57(12), 1738–1745.

    Article  CAS  Google Scholar 

  16. Wen, H.; Yin, Y. D.; Huang, C.; Pan, W.; Liang, D. H. Encapsulation of RNA by negatively charged human serum albumin via physical interactions. Sci. China Chem. 2017, 60(1), 130–135.

    Article  CAS  Google Scholar 

  17. Gummel, J.; Cousin, F.; Boue, F. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J. Am. Chem. Soc. 2007, 129(18), 5806–5807.

    Article  CAS  PubMed  Google Scholar 

  18. Ha, B. Y.; Liu, A. J. Counterion-mediated attraction between two like-charged rods. Phys. Rev. Lett. 1997, 79(7), 1289–1292.

    Article  CAS  Google Scholar 

  19. Ren, Y.; Jiang, X.; Pan, D.; Mao, H. Q. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules 2010, 11(12), 3432–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zelikin, A. N.; Izumrudov, V. Polyelectrolyte complexes formed by calf thymus DNA and aliphatic ionenes: unexpected change in stability upon variation of chain length of ionenes of different charge density. Macromol. Biosci. 2002, 2(2), 78–81.

    Article  CAS  Google Scholar 

  21. Stoerkle, D.; Duschner, S.; Heimann, N.; Maskos, M.; Schmidt, M. Complex formation of DNA with oppositely charged polyelectrolytes of different chain topology: cylindrical brushes and, dendrimers. Macromolecules 2007, 40(22), 7998–8006.

    Article  CAS  Google Scholar 

  22. Izumrudov, V. A.; Wahlund, P. O.; Gustavsson, P. E.; Larsson, P. O.; Galaev, I. Y. Factors controlling phase separation in water-salt solutions of DNA and polycations. Langmuir 2003, 19(11), 4733–4739.

    Article  CAS  Google Scholar 

  23. Michaels, A. S.; Miekka, R. G. Polycation-polyanion complexes–preparation and properties of poly-(vinylbenzyltrimethylammonium) poly-(styrenesulfonate). J. Phys. Chem. 1961, 65(10), 1765–1773.

    Article  CAS  Google Scholar 

  24. Michaels, A. S. Polyelectrolyte complexes. Ind. Eng. Chem. 1965, 57(10), 32–40.

    Article  CAS  Google Scholar 

  25. Chen, J. H.; Heitmann, J. A.; Hubbe, M. A. Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids Surf. A 2003, 223(1–3), 215–230.

    CAS  Google Scholar 

  26. Chen, J. H.; Hubbe, M. A.; Heitmann, J. A.; Argyropoulos, D. S.; Rojas, O. J. Dependency of polyelectrolyte complex stoichiometry on the order of addition -2. Aluminum chloride and poly-vinylsulfate. Colloids Surf. A 2004, 246(1–3), 71–79.

    CAS  Google Scholar 

  27. Zhang, R.; Shklovskii, B. T. Phase diagram of solution of oppositely charged polyelectrolytes. Physica A 2005, 352(1), 216–238.

    Article  CAS  Google Scholar 

  28. Dias, R. S.; Linse, P.; Pais, A. A. C. C. Stepwise disproportionation in polyelectrolyte complexes. J. Comput. Chem. 2011, 32(12), 2697–2707.

    Article  CAS  PubMed  Google Scholar 

  29. Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci. 2011, 167(1–2), 24–37.

    Article  CAS  PubMed  Google Scholar 

  30. Su, C. C.; Zhao, M. T.; Zhu, Z. C.; Zhou, J. H.; Wen, H.; Yin, Y. D.; Deng, Y.; Qiu, D.; Li, B. H.; Liang, D. H. Effect of peptide charge distribution on the structure and kinetics of DNA complex. Macromolecules 2015, 48(3), 756–763.

    Article  CAS  Google Scholar 

  31. Fujii, T.; Sun, Y. L.; An, K. N.; Luo, Z. P. Mechanical properties of single hyaluronan molecules. J. Biomech. 2002, 35(4), 527–531.

    Article  PubMed  Google Scholar 

  32. Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C. B.; Seed, B. CD44 is the principal cell-surface receptor for hyaluronate. Cell 1990, 61(7), 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  33. Brandrup, J.; Immergut, E. H.; Grulke, E. A. “Polymer handbook”, Wiley-Blackwell, New Jersey, 1999.

    Google Scholar 

  34. Zezin, A. B.; Kabanov, V. A. A new class of complex watersoluble polyelectrolytes. Russ. Chem. Rev. 1982, 51(9), 833–855.

    Article  Google Scholar 

  35. Schärtl, W. “Light scattering from polymer solutions and nanoparticle dispersions”, Springer-Verlag, Berlin, 2007.

    Google Scholar 

  36. Wu, C.; Zhou, S. Q. Laser-light scattering study of the phasetransition of poly(n-isopropylacrylamide) in water. 1. Singlechain. Macromolecules 1995, 28(24), 8381–8387.

    Article  CAS  Google Scholar 

  37. Wang, X. H.; Qiu, X. P.; Wu, C. Comparison of the coil-toglobule and the globule-to-coil transitions of a single poly(Nisopropylacrylamide) homopolymer chain in water. Macromolecules 1998, 31(9), 2972–2976.

    Article  CAS  Google Scholar 

  38. Wen, H.; Pan, W.; Zhou, J. H.; Li, Z. C.; Liang, D. H. Complete dissociation and reassembly behavior as studied by using poly(ethylene glycol)-block-poly(glutamate sodium) and kanamycin A. Soft Matter 2015, 11(10), 1930–1936.

    Article  CAS  PubMed  Google Scholar 

  39. Voets, I. K.; de Keizer, A.; Stuart, M. A. C. Complex coacervate core micelles. Adv. Colloid Interface Sci. 2009, 147148, 300–318.

    Article  CAS  Google Scholar 

  40. Pergushov, D. V.; Mueller, A. H. E.; Schacher, F. H. Micellar interpolyelectrolyte complexes. Chem. Soc. Rev. 2012, 41(21), 6888–6901.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21574002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hai Liang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Yin, DX., Jing, HR. et al. Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path. Chin J Polym Sci 37, 36–42 (2019). https://doi.org/10.1007/s10118-018-2166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2166-z

Keywords

Navigation