Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 12, pp 1353–1360 | Cite as

The Crystallization, Melting Behaviors and Thermal Stability of Cross-linked Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Octavinyloctasilasesquioxane

  • Heng-Xue Xiang
  • Fatemeh Zabihi
  • Xu-Zhen Zhang
  • Mei-Fang Zhu
Article
  • 39 Downloads

Abstract

A series of cross-linked poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/octavinyloctasilasesquioxane (PHBV/OVS) composites were obtained by a simple melt reactive processing technique. Dicumyl peroxide (DCP) and OVS were employed as a free radical initiator and a cross-linking agent, respectively. The chemical structure of these produced composites were identified by 1H/13C/29Si-nuclear magnetic resonance spectroscopy (1H/13C/29Si-NMR) and Fourier transform infrared spectroscopy (FTIR). The melting behavior, non-isothermal crystallization, spherulite morphology and thermal stability property of PHBV/OVS composites were also investigated. The nucleation behaviors and crystallization rate of PHBV/OVS were significantly enhanced with the formation of cross-linked networks with different side-chains and cross-linking points. The red shift of crystalline peak temperature with addition of a small amount of OVS content evidenced the higher crystalline ability compared with the neat PHBV. However there was a threshold content, beyond which the crystallization rate weakened again. Additionally, the cross-linked structure of PHBV/OVS composites could be adjusted by changing the amount of OVS.

Keywords

Biodegradable PHBV Reactive processing Crystallization behavior Composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 51603033), the Fundamental Research Funds for the Central Universities (Nos. 2232018A3-01 and 2232018D3-03), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT16R13) and the Open Foundation of Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Education Ministry of China (No. 2017001).

References

  1. 1.
    Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38(3), 536–583CrossRefGoogle Scholar
  2. 2.
    Yang, W. B.; Zhang, L.; Guo, Y. L.; Jiang, Z. N.; He, F. F.; Xie, C. Q.; Fan, J. H.; Wu, J. Y.; Zhang, K. Novel segregated-structure phase change materials composed of paraffin@ graphene microencapsules with high latent heat and thermal conductivity. J. Mater. Sci. 2018, 53(4), 2566–2575CrossRefGoogle Scholar
  3. 3.
    Wang, H.; Zhao, L.; Song, G. L.; Tang, G. Y.; Shi, X. H. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized pickering emulsion polymerization. Sol. Energ. Mater. Sol. C 2018, 175, 102–110CrossRefGoogle Scholar
  4. 4.
    Iwata, T.; Aoyagi, Y.; Fujita, M.; Yamane, H.; Doi, Y.; Suzuki, Y.; Takeuchi, A.; Uesugi, K. Processing of a strong biodegradable poly[(,R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam X-Ray diffraction with synchrotron radiation. Macromol. Rapid Commun. 2004, 25(11), 1100–1104CrossRefGoogle Scholar
  5. 5.
    Chen, Z.; Xiang, H.; Hu, Z.; Ni, Z.; Zhu, M. Enhanced mechanical properties of melt-spun bio-based PHBV fibers: effect of heterogeneous nucleation and drawing process. Acta Polymerica Sinica (in Chinese) 2017, (7), 1121–1129Google Scholar
  6. 6.
    Diez-Pascual, A. M.; Diez-Vicente, A. L. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl. Mater. Interfaces 2014, 6(12), 9822–9834CrossRefGoogle Scholar
  7. 7.
    Wang, Y. Y.; Lu, L. X.; Shi, J. C.; Wang, H. F.; Xiao, Z. D.; Huang, N. P. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules 2011, 12(3), 551–559CrossRefGoogle Scholar
  8. 8.
    Josefine Fischer, J.; Aoyagi, Y.; Enoki, M.; Doi, Y.; Iwata, T. Mechanical properties and enzymatic degradation of poly([,R]-3-hydroxybutyrate-co-[ ]-3-hydroxyhexanoate) uniaxially cold-drawn films. Polym. Degrad. Stab. 2004, 83(3), 453–460CrossRefGoogle Scholar
  9. 9.
    Lu, S. F.; Shen, T. W.; Xing, J. W.; Song, Q. W.; Shao, J. F.; Zhang, J.; Xin, C. Preparation and characterization of crosslinked polyurethane shell microencapsulated phase change materials by interfacial polymerization. Mater. Lett. 2018, 211, 36–39CrossRefGoogle Scholar
  10. 10.
    Xiang, H. X.; Wang, S. C.; Wang, R. L.; Zhou, Z.; Peng, C.; Zhu, M. F. Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Sci. China Chem. 2013, 56(6), 716–723CrossRefGoogle Scholar
  11. 11.
    Xiang, H. X.; Wen, X. S.; Miu, X. H.; Li, Y.; Zhou, Z.; Zhu, M. F. Thermal depolymerization mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog. Nat. Sci-Mater. 2016, 26(1), 58–64CrossRefGoogle Scholar
  12. 12.
    Ye, H. M.; Li, H.; Yang, Y. P. Crystallization behavior and phase transition of poly(,R-3-hydroxydecanoate). Colloid Polym. Sci. 2016, 294(4), 795–799CrossRefGoogle Scholar
  13. 13.
    Wang, S.; Chen, W.; Xiang, H.; Yang, J.; Zhou, Z.; Zhu, M. Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers 2016, 8(8), 273CrossRefGoogle Scholar
  14. 14.
    Nocita, D.; Forte, G.; Drakopoulos, S. X.; Visco, A.; Gianporcaro, A.; Ronca, S. Processing and characterization of bio-polyester reactive blends: From thermoplastic blends to cross-linked networks. Polymer 2017, 132, 252–263CrossRefGoogle Scholar
  15. 15.
    Bian, Y. J.; Han, C. Y.; Han, L. J.; Lin, H. J.; Zhang, H. L.; Bian, J. J.; Dong, L. S. Toughening mechanism behind intriguing stress-strain curves in tensile tests of highly enhanced compatibilization of biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. RSC Adv. 2014, 4(79), 41722–41733CrossRefGoogle Scholar
  16. 16.
    Wu, N. J.; Zhang, H.; Fu, G. L. Super-tough poly(lactide) thermoplastic vulcanizates based on modified natural rubber. ACS Sustain. Chem. Engineer. 2017, 5(1), 78–84CrossRefGoogle Scholar
  17. 17.
    You, J.; Yu, W.; Zhou, C. Accelerated crystallization of poly(lactic acid): synergistic effect of poly(ethylene glycol), dibenzylidene sorbitol, and long-chain branching. Ind. Engineer. Chem. Res. 2014, 53(3), 1097–1107CrossRefGoogle Scholar
  18. 18.
    Bian, Y. J.; Han, L. J.; Han, C. Y.; Lin, H. J.; Zhang, H. L.; Bian, J. J.; Dong, L. S. Intriguing crystallization behavior and rheological properties of radical-based crosslinked biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). CrystEngComm, 2014, 16(13), 2702–2714CrossRefGoogle Scholar
  19. 19.
    Pathaweeisariyakul, T.; Narkchamnan, K.; Thitisak, B.; Rungswang, W.; Yau, W. W. An alternative method for long chain branching determination by triple-detector gel permeation chromatography. Polymer 2016, 107, 122–129CrossRefGoogle Scholar
  20. 20.
    Xiang, H. X.; Chen, W.; Chen, Z. Y.; Sun, B.; Zhu, M. F. Significant accelerated crystallization of long chain branched poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high nucleation temperature under fast cooling rate. Compos. Sci. Technol. 2017, 142, 207–213CrossRefGoogle Scholar
  21. 21.
    Wang, J.; Li, B.; Wang, X.; Yang, F.; Shen, H.; Wu, D. Morphological evolution of self-assembled structures induced by the molecular architecture of supra-amphiphiles. Langmuir 2016, 32(51), 13706–13715CrossRefGoogle Scholar
  22. 22.
    Zhang, L.; Tang, H.; Hou, G.; Shen, Y.; Deng, F. The domain structure and mobility of semi-crystalline poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): A solid-state NMR study. Polymer 2007, 48(10), 2928–2938CrossRefGoogle Scholar
  23. 23.
    Xiang, H. X.; Chen, S. H.; Cheng, Y. H.; Zhou, Z.; Zhu, M. F. Structural characteristics and enhanced mechanical and thermal properties of full biodegradable tea polyphenol/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films. eXPRESS Polym. Lett. 2013, 7(9), 778–786Google Scholar
  24. 24.
    Xu, H.; Yang, B.; Wang, J.; Guang, S.; Li, C. Preparation, thermal properties, and Tg increase mechanism of poly(acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposites. Macromolecules 2005, 38(25), 10455–10460CrossRefGoogle Scholar
  25. 25.
    Zhang, Y.; Wang, C. L.; Du, H. N.; Li, X. P.; Mi, D. S.; Zhang, X. W.; Wang, T.; Zhang, J. Promoting crystallization of polylactide by the formation of crosslinking bundles. Mater. Lett. 2014, 117, 171–174CrossRefGoogle Scholar
  26. 26.
    Ma, P. M.; Cai, X. X.; Wang, W.; Duan, F.; Shi, D. J.; Lemstra, P. J. Crystallization behavior of partially crosslinked poly(beta-hydroxyalkonates)/ poly(butylene succinate) blends. J. Appl. Polym. Sci. 2014, 131(21), 41020CrossRefGoogle Scholar
  27. 27.
    Li, S. Z.; Xiao, M. M.; Wei, D. F.; Xiao, H. N.; Hu, F. Z.; Zheng, A. N. The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 2009, 50(25), 6121–6128CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Heng-Xue Xiang
    • 1
  • Fatemeh Zabihi
    • 1
  • Xu-Zhen Zhang
    • 2
  • Mei-Fang Zhu
    • 1
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and TextileZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations