Skip to main content
Log in

ε-Poly(L-lysine)-based Hydrogels with Fast-acting and Prolonged Antibacterial Activities

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Bacterial infections and the associated morbidity and mortality due to bacterial pathogens in wounds and medical implants have been increasing as most of current coatings cannot fulfill all the requirements including excellent intrinsically antibacterial activity, low cytotoxicity, and favorable physical properties. Herein, we present a kind of antibacterial hydrogel based on ε-poly(L-lysine) (EPL) grafted carboxymethyl chitosan (CMC-g-EPL) as the inherently antibacterial matrix and the surplus EPL as highly efficient antimicrobial agent. Such hydrogels possess tunable swelling abilities with water absorption percentages of 800%-2000% and modulus varying from 10 kPa to 100 kPa, and exhibit two-stage excellent antibacterial behavior. First, the free EPL can be released from the hydrogel network for quick and highly efficient bacteria killing with 99.99% of efficacy; second, the grafted EPL endows hydrogel matrix with prolonged intrinsically antibacterial activity, especially when most of free EPL is released from the hydrogel. Overall, we provide a new insight for preparing highly effective antibacterial hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Il Kim, S. Bacterial infection after liver transplantation. World J. Gastroenterol. 2014, 20(20), 6211–6220

    Article  Google Scholar 

  2. Yarden-Bilavsky, H.; Ashkenazi-Hoffnung, L.; Livni, G.; Amir, J.; Bilavsky, E. Month-by-month age analysis of the risk for serious bacterial infections in febrile infants with bronchiolitis. Clin. Pediatr. 2011, 50(11), 1052–1056

    Article  Google Scholar 

  3. Li, P.; Poon, Y. F.; Li, W. F.; Zhu, H. Y.; Yeap, S. H.; Cao, Y.; Qi, X. B.; Zhou, C. C.; Lamrani, M.; Beuerman, R. W.; Kang, E. T.; Mu, Y. G.; Li, C. M.; Chang, M. W.; Leong, S. S. J.; Chan-Park, M. B. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011, 10(2), 149–156

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Q. T.; Zou, Y. J.; Arno, M. C.; Chen, S.; Wang, T.; Gao, J. Y.; Dove, A. P.; Du, J. Z. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem. Soc. Rev. 2017, 46(20), 6255–6275

    Article  CAS  PubMed  Google Scholar 

  5. Tran, N. Q.; Joung, Y. K.; Lih, E.; Park, K. D. In situ forming and Rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 2011, 12(8), 2872–2880

    Article  CAS  PubMed  Google Scholar 

  6. Lu, Z. T.; Zhang, J. Q.; Yu, Z. G.; Liu, Q. Z.; Liu, K.; Li, M. F.; Wang, D. Hydrogel degradation triggered by pH for the smart release of antibiotics to combat bacterial infection. New J. Chem. 2017, 41(2), 432–436

    Article  CAS  Google Scholar 

  7. Ghavaminejad, A.; Park, C. H.; Kim, C. S. In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 2016, 17(3), 1213–1223

    Article  CAS  PubMed  Google Scholar 

  8. Song, T.; Xi, Y. J.; Du, J. Z. Antibacterial hydrogels incorporated with poly(glutamic acid)-based vesicles. Acta Polymerica Sininca (in Chinese) 2018, (1), 119–128

    Google Scholar 

  9. Wang, R.; Zhou, B.; Xu, D. L.; Xu, H.; Liang, L.; Feng, X. H.; Ouyang, P. K.; Chi, B. Antimicrobial and biocompatible epsilon-polylysine-gamma-poly(glutamic acid)-based hydrogel system for wound healing. J. Bioact. Compat. Polym. 2016, 31(3), 242–259

    Article  CAS  Google Scholar 

  10. Shu, Y.; Hao, T.; Yao, F. L.; Qian, Y. F.; Wang, Y.; Yang, B. G.; Li, J. J.; Wang, C. Y. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl. Mater. Interfaces 2015, 7(12), 6505–6517

    Article  CAS  PubMed  Google Scholar 

  11. Xu, W. J.; Qian, J. M.; Zhang, Y. P.; Suo, A. L.; Cui, N.; Wang, J. L.; Yao, Y.; Wang, H. J. A double-network poly(jVepsilon-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Acta Biomater. 2016, 33, 131–141

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, C.; Zhang, X. L.; Meng, Y. B.; Zhang, Z. H.; Chen, J. D.; Zhang, Q. Q. Multiresponsive and biocompatible selfhealing hydrogel: Its facile synthesis in water, characterization and properties. Soft Matter 2017, 13(16), 3003–3012

    Article  CAS  PubMed  Google Scholar 

  13. Togo, Y.; Takahashi, K.; Saito, K.; Kiso, H.; Huang, B. Y.; Tsukamoto, H.; Hyon, S. H.; Bessho, K. Aldehyded dextran and epsilon-poly(L-lysine) hydrogel as nonviral gene carrier. Stem Cells Int. 2013, 634379

  14. Unalan, I. U.; Ucar, K. D. A.; Arcan, I.; Korel, F.; Yemenicioglu, A. Antimicrobial potential of polylysine in edible films. Food Sci. Technol. Res. 2011, 17(4), 375–380

    Article  Google Scholar 

  15. Zhou, C. C.; Yuan, Y.; Zhou, P. Y.; Wang, F. Y. K.; Hong, Y. X.; Wang, N. S.; Xu, S. G.; Du, J. Z. Highly effective antibacterial vesicles based on peptide-mimetic alternating copolymers for bone repair. Biomacromolecules 2017, 18(12), 4154–4162

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, C. C.; Li, P.; Qi, X. B.; Sharif, A. R. M.; Poon, Y. F.; Cao, Y.; Chang, M. W.; Leong, S. S. J.; Chan-Park, M. B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials 2011, 32(11), 2704–2712

    Article  CAS  PubMed  Google Scholar 

  17. Gao, J. Y.; Wang, M. Z.; Wang, F. Y. K.; Du, J. Z. Synthesis and mechanism insight of a peptide-grafted hyperbranched polymer nanosheet with weak positive charges but excellent intrinsically antibacterial efficacy. Biomacromolecules 2016, 17(6), 2080–2086

    Article  CAS  PubMed  Google Scholar 

  18. Lam, S. J.; O’Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 2016, 1(11), 16162

    Article  CAS  PubMed  Google Scholar 

  19. Papenfort, K.; Bassler, B. L. Quorum sensing signal-response systems in gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14(9), 576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tong, X. M.; Yang, F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 2014, 35(6), 1807–1815

    Article  CAS  PubMed  Google Scholar 

  21. Edwards, S. L.; Ulrich, D.; White, J. F.; Su, K.; Rosamilia, A.; Ramshaw, J. A. M.; Gargett, C. E.; Werkmeister, J. A. Temporal changes in the biomechanical properties of endometrial mesenchymal stem cell seeded scaffolds in a rat model. Acta Biomater. 2015, 13, 286–294

    Article  CAS  PubMed  Google Scholar 

  22. Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W.; Li, D.; Fan, C.; Lee, S. T. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 2010, 22(48), 5463–5467

    Article  CAS  PubMed  Google Scholar 

  23. Wiegand, I.; Hilpert, K.; Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175

    Article  CAS  PubMed  Google Scholar 

  24. Dahl, T. A.; Midden, W. R.; Hartman, P. E. Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygen. J. Bacteriol. 1989, 171(4), 2188–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geng, X. D.; Yang, R. H.; Huang, J. Y.; Zhang, X.; Wang, X. Y. Evaluation antibacterial activity of quaternary-based chitin/chitosan derivatives in vitro. J. Food Sci. 2013, 78(1), M90–M97

    Article  CAS  PubMed  Google Scholar 

  26. Sun, H.; Hong, Y. X.; Xi, Y. J.; Zou, Y. J.; Gao, J. Y.; Du, J. Z. Synthesis, self-assembly and biomedical applications of antimicrobial peptide-polymer conjugates. Biomacromolecules 2018, 10.1021/acs.biomac.1028b00208

    Google Scholar 

  27. Zheng, H.; Lu, J.; Chao, F.; Ying, Z.; Hui, B.; Zhang, X.; Xue, X.; Chen, Y.; Luo, X. Underlying mechanism of in vivo and in vitro activity of c-terminal-amidated thanatin against clinical isolates of extended-spectrum-lactamase-producing Escherichia coli. J. Infect. Dis. 2011, 203(2), 273–282

    Article  CAS  Google Scholar 

  28. Liu, Z. Q.; Wei, Z.; Zhu, X. L.; Huang, G. Y.; Xu, F.; Yang, J. H.; Osada, Y.; Zrinyi, M.; Li, J. H.; Chen, Y. M. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf., B 2015, 128, 140–148

    Article  CAS  Google Scholar 

  29. Zhou, L.; Chen, M.; Guan, Y.; Zhang, Y. J. Multiple responsive hydrogel films based on dynamic schiff base linkages. Polym. Chem. 2014, 5(24), 7081–7089

    Article  CAS  Google Scholar 

  30. Dong, D. Y.; Li, J. J.; Cui, M.; Wang, J. M.; Zhou, Y. H.; Luo, L.; Wei, Y. F.; Ye, L.; Sun, H.; Yao, F. L. In situ “clickable” zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Appl. Mater. Interfaces 2016, 8(7), 4442–4455

    Article  CAS  PubMed  Google Scholar 

  31. Ishii-Mizuno, Y.; Umeki, Y.; Onuki, Y.; Watanabe, H.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Improved sustained release of antigen from immunostimulatory DNA hydrogel by electrostatic interaction with chitosan. Int. J. Pharm. 2017, 516(1-2), 392–400

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, G. Z.; Ngai, T.; Deng, Y. H.; Wang, C. Y. An injectable hydrogel with excellent self-healing property based on quadruple hydrogen bonding. Macromol. Chem. Phys. 2016, 217(19), 2172–2181

    Article  CAS  Google Scholar 

  33. Su, E.; Okay, O. Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. Eur. Polym. J. 2017, 88, 191–204

    Article  CAS  Google Scholar 

  34. Sakamoto, J. M.; Gordon, T. R. Factors influencing infection of mechanical wounds by Fusarium circinatum on Monterey pines (pinus radiata). Plant Pathol. 2006, 55(1), 130–136

    Article  Google Scholar 

  35. Toda, H.; Yamamoto, M.; Uyama, H.; Tabata, Y. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture. Acta Biomater. 2016, 29, 215–227.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21674081), Shanghai International Scientific Collaboration Fund (No. 15230724500), Shanghai 1000 Talents Plan (No. SH01068), and the Fundamental Research Fund for the Central Universities (Nos. 22120180109 and 1500219107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, YJ., He, SS. & Du, JZ. ε-Poly(L-lysine)-based Hydrogels with Fast-acting and Prolonged Antibacterial Activities. Chin J Polym Sci 36, 1239–1250 (2018). https://doi.org/10.1007/s10118-018-2156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2156-1

Keywords

Navigation