Skip to main content
Log in

Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Despite the good biodegradable and mechanical properties, poly(lactic acid) still suffers from a highly inherent flammability, which restricts its applications in the electric and automobile fields. In order to improve the flame retardancy of PLA, in this work, melamine polyphosphate (MPP) and zinc bisdiethylphosphinate (ZnPi) were firstly incorporated into PLA, and the synergistic effect of them on flame retardance of PLA was investigated using limiting oxygen index (LOI), UL-94 vertical measurement, scanning electron microscopy (SEM) and cone calorimeter tests etc. The results showed that PLA composite with 15 wt% of MPP/ZnPi (3:2) had the best flame-retardant efficiency with LOI value of 30.1 and V0 rating in UL-94 tests, which was far better than using MPP or ZnPi alone. What is more, although a wide range of flame retardants have been developed to reduce the flammability, so far, they normally compromise the mechanical properties of PLA. On the premise of maintaining good flame-retardant performance, we improved the toughness of flame-retardant PLA composite, and the impact strength of flame-retardant PLA composite was more than tripled (8.08 kJ/m2) by adding thermoplastic urethanes (TPU). This work offers an innovative method for the design of the unique integration of extraordinary flame retardancy and toughening reinforcement for PLA materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31(6), 576–602

    Article  CAS  Google Scholar 

  2. Xue, W.; Lv, C.; Jing, Y.; Chen, F.; Fu, Q. Fabrication of electrospun PVDF nanofibers with higher content of poly ft phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. Chinese J. Polym. Sci. 2017, 35(8), 992–1000

    Article  CAS  Google Scholar 

  3. He, Y. L.; Guo, Y. L.; He, R.; Jin, T. X.; Chen, F.; Fu, Q. Towards high molecular weight poly(bisphenol A carbonate) with excellent thermal stability and mechanical properties by solid-state polymerization. Chinese J. Polym. Sci. 2015, 33(8), 1176–1185

    Article  CAS  Google Scholar 

  4. Mooney, B. P. The second green revolution? Production of plant-based biodegradable plastics. Biochem. J. 2009, 418(2), 219–232

    CAS  PubMed  Google Scholar 

  5. Shen, L.; Worrell, E.; Patel, M. Present and future development in plastics from biomass. Biofuel. Bioprod. Biorefin. 2010, 4(1), 25–40

    Article  CAS  Google Scholar 

  6. Kimura K.; Horikoshi Y. Bio-based polymers. Fujitsu. Sci. Tech. J. 2005, 41(2), 173–180

    CAS  Google Scholar 

  7. He, S.; Guo, Y. C.; Stone, T.; Davis, N.; Kim, D.; Kim, K.; Rafailovich, M. Biodegradable, flame retardant wood-plastic combination via in situ ring-opening polymerization of lactide monomers. J. Wood Sci. 2017, 63(2), 154–160

    Article  CAS  Google Scholar 

  8. Fukushima, K.; Murariu, M.; Camino, G.; Dubois, P. Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly (lactic acid). Polym. Degrad. Stab. 2010, 95(6), 1063–1076

    Article  CAS  Google Scholar 

  9. Jing, J.; Zhang, Y.; Fang, Z. P. Diphenolic acid based biphosphate on the properties of polylactic acid: synthesis, fire behavior and flame retardant mechanism. Polymer 2017, 108, 29–37

    Article  CAS  Google Scholar 

  10. Jing, J.; Zhang, Y.; Tang, X. L.; Zhou, Y.; Li, X. Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: a novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer 2017, 108, 361–371

    Article  CAS  Google Scholar 

  11. Jiang, P.; Gu, X. Y.; Zhang, S.; Sun, J.; Xu, R.; Bourbigot, S.; Duquesne, S.; Casetta, M. Flammability and thermal degradation of poly(lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS. Polymer 2015, 79, 221–231

    Article  CAS  Google Scholar 

  12. Mauldin, T. C.; Zammarano, M.; Gilman, J. W.; Shields, J. R.; Boday, D. J. Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants. Polym. Chem. 2014, 5, 5139–5146

    Article  CAS  Google Scholar 

  13. Horny, N.; Kanake, Y.; Chirtoc, M.; Tighzert, L. Optimization of thermal and mechanical properties of bio-polymer based nanocomposites. Polym. Degrad. Stab. 2016, 127, 105–112

    Article  CAS  Google Scholar 

  14. Zhao, X. M.; de Juan, S.; Guerrero, F. R.; Li, Z.; Llorca, J.; Wang, D. Y. Effect of jV,jV′-diallyl-phenylphosphoricdiamide on ease of ignition, thermal decomposition behavior and mechanical properties of poly (lactic acid). Polym. Degrad. Stab. 2016, 127, 2–10

    Article  CAS  Google Scholar 

  15. Lesaffre, N.; Bellayer, S.; Fontaine, G.; Jimenez, M.; Bourbigot, S. Revealing the impact of ageing on a flame retarded PLA. Polym. Degrad. Stab. 2016, 127, 88–97

    Article  CAS  Google Scholar 

  16. Zhao, C. X.; Liu, Y.; Wang, D. Y.; Wang, D. L.; Wang, Y. Z. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym. Degrad. Stab. 2008, 93(7), 1323–1331

    Article  CAS  Google Scholar 

  17. Stevens, G. C.; Mann, A. H. Risks and benefits in the use of flame retardants in consumer products. DTI Report. C. J. Pref, London, 1999

    Google Scholar 

  18. Zhan, J; Song, L; Nie, S. B.; Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 2009, 94(3), 291–296

    Article  CAS  Google Scholar 

  19. Stoclet, G.; Sclavons, M.; Lecouvet, B.; Devaux, J.; van Velthem, P.; Boborodea, A.; Bourbigot, S.; Sallem-Idrissi, N. Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Adv. 2014, 4, 57553–57563

    Article  CAS  Google Scholar 

  20. Ke, C. H.; Li, J.; Fang, K. Y.; Zhu, K. L.; Zhu, J.; Yan, Q.; Wang, Y. Z. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym. Degrad. Stab. 2010, 95(5), 763–770

    Article  CAS  Google Scholar 

  21. Li, Y. J.; Shimizu, H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 2007, 7(7), 921–928

    Article  CAS  PubMed  Google Scholar 

  22. Shibata, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate). Polymer 2006, 47(10), 3557–3564

    Article  CAS  Google Scholar 

  23. Lin, Y.; Zhang, K. Y.; Dong, Z. M.; Dong, L. S.; Li, Y. S. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 2007, 40(17), 6257–6267

    Article  CAS  Google Scholar 

  24. Gaan, S. Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus-nitrogen synergism. Polym. Degrad. Stab. 2008, 93(1), 99–108

    Article  CAS  Google Scholar 

  25. Duquesne, S.; Bras, M. L.; Jama, C.; Weil, E. D.; Gengembre, L. X-ray photoelectron spectroscopy investigation of fire retarded polymeric materials: application to the study of an intumescent system. Polym. Degrad. Stab. 2002, 77(2), 203–211

    Article  CAS  Google Scholar 

  26. Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta J. M.; Dubois, P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mat. Sci. Eng. R 2009, 63(3), 100–125

    Article  CAS  Google Scholar 

  27. Bras, M. L.; Duquesne, S.; Magali, F.; Grisel, M.; Poutch, F. Intumescent polypropylene/flax blends: a preliminary study Polym. Degrad. Stab. 2005, 88(1), 80–84

    Article  CAS  Google Scholar 

  28. Gaan, S.; Sun, G.; Hutches, K.; Engelhard, M. H. Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus-nitrogen synergism. Polym. Degrad. Stab. 2008, 93(1), 99–108

    Article  CAS  Google Scholar 

  29. Nie, S. B.; Hu Y.; Song L.; He, Q. L.; Yang, D. D.; Chen, H. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym. Adv. Technol. 2008, 19(8), 1077–1083

    Article  CAS  Google Scholar 

  30. Yu, W. J.; Xu, S. M.; Zhang, L.; Fu, Q. Morphology and mechanical properties of immiscible polyethylene/polyamide12 blends prepared by high shear processing. Chinese J. Polym. Sci. 2017, 35(9), 1132–1142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51721091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen or Qiang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, CB., Mao, HD., Chen, F. et al. Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties. Chin J Polym Sci 36, 1385–1393 (2018). https://doi.org/10.1007/s10118-018-2150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2150-7

Keywords

Navigation