Skip to main content
Log in

Effects of Halloysite Nanotube Reinforcement in Expandable Graphite Based Intumescent Fire Retardant Coatings Developed Using Hybrid Epoxy Binder System

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy system were investigated. Intumescent coating formulations were developed by incorporating different weight percentages of HNTs and PDMS in basic intumescent ingredients (ammonium polyphosphate/melamine/boric acid/expandable graphite, APP/MEL/BA/EG). The performance of intumescent formulations was investigated by furnace fire test, Bunsen burner fire test, field emission electron microscopy (FESEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared analysis (FTIR). The Bunsen burner fire test results indicated that the fire performance of HNTs and PDMS reinforced intumescent formulation has improved due to the development of silicate network over the char residue. Improved expansion in char residue was also noticed in the formulation, SH(3), due to the minimum decomposition of char carbon. FESEM and TEM results validated the development of silicate network over char layer of coating formulations. A considerable mass loss difference was noticed during thermal gravimetric analysis (TGA) of intumescent coating formulations. Reference formulation, SH(0) with no filler, degraded at 300 °C and lost 50% of its total mass but SH(3), due to synergistic effects between PDMS and HNTs, degraded above 400 °C and showed the maximum thermal stability. XRD analysis showed the development of thermally stable compound mulltie, due to the synergism of HNTs and siloxane during intumescent reactions, which enhanced fire performance. FTIR analysis showed the presence of incorporated siloxane and silicates bonds in char residue, which endorsed the toughness of intumescent char layer produced. Moreover, the synergistic effect of HNTs, PDMS, and other basic intumescent ingredients enhanced the polymer cross-linking in binder system and improved fire resistive performance of coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 2000, 28(1), 1–63

    Article  Google Scholar 

  2. Pandey, J. K.; Reddy, K. R.; Kumar, A. P.; Singh, R. An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 2005, 88(2), 234–250

    Article  CAS  Google Scholar 

  3. Kiliaris, P.; Papaspyrides, C. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 2010, 35(7), 902–958

    Article  CAS  Google Scholar 

  4. Pavlidou, S.; Papaspyrides, C. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33(12), 1119–1198

    Article  CAS  Google Scholar 

  5. Lecouvet, B.; Gutierrez, J.; Sclavons, M.; Bailly, C. Structureproperty relationships in polyamide 12/halloysite nanotube nanocomposites. Polym. Degrad. Stab. 2011, 96(2), 226–235

    Article  CAS  Google Scholar 

  6. Prashantha, K.; Schmitt, H.; Lacrampe, M.; Krawczak, P. Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos. Sci. Technol. 2011, 71(16), 1859–1866

    Article  CAS  Google Scholar 

  7. Murariu, M.; Dechief, A. L.; Paint, Y.; Peeterbroeck, S.; Bonnaud, L.; Dubois, P. Polylactide (PLA)-halloysite nanocomposites: production, morphology and key-properties. J. Polym. Environ. 2012, 20(4), 932–943

    Article  CAS  Google Scholar 

  8. Prashantha, K.; Lecouvet, B.; Sclavons, M.; Lacrampe, M. F.; Krawczak, P. Poly (lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. J. Appl. Polym. Sci. 2013, 128(3), 1895–1903

    CAS  Google Scholar 

  9. Singh, B. Why does halloysite roll?—A new model. Clays Clay Miner. 1996, 44(2), 191–196

    Article  CAS  Google Scholar 

  10. Frost, R.; Shurvell, H. Raman microprobe spectroscopy of halloysite. Clays Clay Miner. 1997, 45(1), 68–72

    Article  CAS  Google Scholar 

  11. Lecouvet, B.; Sclavons, M.; Bourbigot, S.; Bailly, C. Towards scalable production of polyamide 12/halloysite nanocomposites via waterassisted extrusion: mechanical modeling, thermal and fire properties. Polym. Adv. Technol. 2014, 25(2), 137–151

    Article  CAS  Google Scholar 

  12. Lecouvet, B.; Sclavons, M.; Bourbigot, S.; Devaux, J.; Bailly, C. Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer 2011, 52(19), 4284–4295

    Article  CAS  Google Scholar 

  13. Marney, D.; Russell, L.; Wu, D.; Nguyen, T.; Cramm, D.; Rigopoulos, N.; Wright, N.; Greaves, M. The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym. Degrad. Stab. 2008, 93(10), 1971–1978

    Article  CAS  Google Scholar 

  14. Lecouvet, B.; Sclavons, M.; Bourbigot, S.; Bailly, C. Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polym. Degrad. Stab. 2013, 98(10), 1993–2004

    Article  CAS  Google Scholar 

  15. Li, H.; Yuan, J.; Qian, H.; Wu, L. Synthesis and properties of SiO2/P(MMA-BA) core-shell structural latex with siloxanes. Prog. Org. Coat. 2016, 97, 65–73

    Article  CAS  Google Scholar 

  16. Ahmad, S.; Ashraf, S.; Sharmin, E.; Mohomad, A.; Alam, M. Synthesis, formulation, and characterization of siloxane modified epoxybased anticorrosive paints. J. Appl. Polym. Sci. 2006, 100(6), 4981–4991

    Article  CAS  Google Scholar 

  17. Cardelli, A.; Ruggeri, G.; Calderisi, M.; Lednev, O.; Cardelli, C.; Tombari, E. Effects of poly (dimethylsiloxane) and inorganic fillers in halogen free flame retardant poly (ethyleneco- vinyl acetate) compound: A chemometric approach. Polym. Degrad. Stab. 2012, 97(12), 2536–2544

    Article  CAS  Google Scholar 

  18. Murias, P.; Maciejewski, H.; Galina, H. Epoxy resins modified with reactive low molecular weight siloxanes. Eur. Polym. J. 2012, 48(4), 769–773

    Article  CAS  Google Scholar 

  19. Sung, P. H.; Lin, C. Y. Polysiloxane modified epoxy polymer networks~I. Graft interpenetrating polymeric networks. Eur. Polym. J. 1997, 33(6), 903–906

    CAS  Google Scholar 

  20. Lecouvet, B.; Sclavons, M.; Bailly, C.; Bourbigot, S. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym. Degrad. Stab. 2013, 98(11), 2268–2281

    Article  CAS  Google Scholar 

  21. Jimenez, M.; Duquesne, S.; Bourbigot, S. Multiscale experimental approach for developing high-performance intumescent coatings. Ind. Eng. Chem. Res. 2006, 45(13), 4500–4508

    Article  CAS  Google Scholar 

  22. Connell, J. E.; Metcalfe, E.; Thomas, M. J. K. Silicate-siloxane fire retardant composites. Polym. Int. 2000, 49(10), 1092–1094

    Article  CAS  Google Scholar 

  23. Han, Z.; Fina, A.; Camino, G. Chapter 12-Organosilicon compounds as polymer fire retardants. in "Polymer Green Flame Retardants". ed. by Constantine Papaspyrides and Pantelis Kiliaris. Elsevier, 2014, 389–418

    Chapter  Google Scholar 

  24. Ullah, S.; Ahmad, F. Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating. Polym. Degrad. Stab. 2014, 103, 49–62

    Article  CAS  Google Scholar 

  25. Bodzay, B.; Bocz, K.; Barkai, Z.; Marosi, G. Influence of rheological additives on char formation and fire resistance of intumescent coatings. Polym. Degrad. Stab. 2011, 96(3), 355–362

    Article  CAS  Google Scholar 

  26. Jimenez, M.; Duquesne, S.; Bourbigot, S. Characterization of the performance of an intumescent fire protective coating. Surf. Coat. Technol. 2006, 201(3-4), 979–987

    Article  CAS  Google Scholar 

  27. Yeh, J. M.; Huang, H. Y.; Chen, C. L.; Su, W. F.; Yu, Y. H. Siloxane-modified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf. Coat. Technol. 2006, 200(8), 2753–2763

    Article  CAS  Google Scholar 

  28. Zhu, F. L.; Xin, Q.; Feng, Q. Q.; Liu, R. T.; Li, K. J. Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles: Remarkable synergistic effect. Surf. Coat. Technol. 2016, 294, 90–94

    Article  CAS  Google Scholar 

  29. Ullah, S.; Ahmad, F.; Shariff, A. M.; Raza, M. R.; Masset, P. J. The role of multi-wall carbon nanotubes in char strength of epoxy based intumescent fire retardant coating. J. Anal. Appl. Pyrolysis. 2017, 124, 149–160

    Article  CAS  Google Scholar 

  30. Ullah, S.; Ahmad, F.; Shariff, A. M.; Bustam, M. A. Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate. Polym. Degrad. Stab. 2014, 110, 91–103

    Article  CAS  Google Scholar 

  31. Gu, J. W.; Zhang, G. C.; Dong, S. L.; Zhang, Q. Y.; Kong, J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 2007, 201(18), 7835–7841

    Article  CAS  Google Scholar 

  32. Shi, Y.; Wang, G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl. Surf. Sci. 2016, 385, 453–463

    Article  CAS  Google Scholar 

  33. Hazwani Dzulkafli, H.; Ahmad, F.; Ullah, S.; Hussain, P.; Mamat, O.; Megat-Yusoff, P. S. M. Effects of talc on fire retarding, thermal degradation and water resistance of intumescent coating. Appl. Clay Sci. 2017, 146(Supplement C), 350–361

    Article  CAS  Google Scholar 

  34. Gardelle, B.; Duquesne, S.; Vandereecken, P.; Bellayer, S.; Bourbigot, S. Resistance to fire of intumescent silicone based coating: The role of organoclay. Prog. Org. Coat. 2013, 76(11), 1633–1641

    Article  CAS  Google Scholar 

  35. Liu, M.; Guo, B.; Du, M.; Cai, X.; Jia, D. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 2007, 18(45), 455703

    Article  CAS  Google Scholar 

  36. Zhao, J.; Deng, C. L.; Du, S. L.; Chen, L.; Deng, C.; Wang, Y. Z. Synergistic flameretardant effect of halloysite nanotubes on intumescent flame retardant in LDPE. J. Appl. Polym. Sci. 2014, 131(7), 40065

    Google Scholar 

  37. Li, H.; Hu, Z.; Zhang, S.; Gu, X.; Wang, H.; Jiang, P.; Zhao, Q. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Prog. Org. Coat. 2015, 78, 318–324

    Article  CAS  Google Scholar 

  38. Ullah, S.; Ahmad, F.; Megat-Yuso, P.; Binti Azmi, N. H. A study of bonding mechanism of expandable graphite based intumescent coating on steel substrate. J. Appl. Sci. 2011, 11, 1630–1635

    Article  CAS  Google Scholar 

  39. Ullah, S.; Ahmad, F.; Shariff, A. M.; Bustam, M. A.; Gonfa, G.; Gillani, Q. F. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. Prog. Org. Coat. 2017, 109, 70–82

    Article  CAS  Google Scholar 

  40. Ullah, S.; Ahmad, F.; Shariff, A.; Bustam, M. Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate. Polym. Degrad. Stab. 2014, 110, 91–103

    Article  CAS  Google Scholar 

  41. Ahmad, F.; Ullah, S.; Mohammad, W. F.; Shariff, M. F. Thermal performance of alumina filler reinforced intumescent fire retardant coating for structural application. IOP Conference Series: Materials Science and Engineering. 2014, 60(1), 012023

    Article  CAS  Google Scholar 

  42. Fatima Gillani, Q.; Ahmad, F.; Mutalib, A.; Ibrahim, M.; Syahera, E. Thermal degradation and char morphology of HNTs reinforced epoxy based intumescent fire retardant coatings. Key Eng. Mater. 2016, 701, 83–88

    Article  Google Scholar 

  43. Kaur, J.; Ahmad, F.; Ullah, S.; Yusoff, P. S. M. M.; Ahmad, R. The role of bentonite clay on improvement in char adhesion of intumescent fire-retardant coating with steel substrate. Arab. J. Sci. Eng. 2017, 42(5), 2043–2053

    Article  CAS  Google Scholar 

  44. Medvedev, E.; Komarevskaya, A. S. IR spectroscopic study of the phase composition of boric acid as a component of glass batch. Glass Ceram. 2007, 64(1-2), 42–46

    Article  CAS  Google Scholar 

  45. Mahapatra, S. S.; Karak, N. s-Triazine containing flame retardant hyperbranched polyamines: synthesis, characterization and properties evaluation. Polym. Degrad. Stab. 2007, 92(6), 947–955

    Article  CAS  Google Scholar 

  46. Puri, R. G.; Khanna, A. S. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel. Prog. Org. Coat. 2016, 92, 8–15

    Article  CAS  Google Scholar 

  47. Feng, C.; Liang, M.; Chen, W.; Huang, J.; Liu, H. Flame retardancy and thermal degradation of intumescent flame retardant EVA composite with efficient charring agent. J. Anal. Appl. Pyrolysis 2015, 113, 266–273

    Article  CAS  Google Scholar 

  48. Stavitski, E.. Infrared spectroscopy on powder catalysts. in ”In-situ characterization of heterogeneous catalysts”, Eds. Rodriguez, J. A., Hanson, J. C., Chupas, P. J. John Wiley &Sons 2013, 241–265

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial and laboratory support provided by UTP via YUTP research grant and Mechanical Engineering Department of Universiti Teknologi PETRONAS, Malaysia for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiz Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillani, Q.F., Ahmad, F., Mutalib, M.I.A. et al. Effects of Halloysite Nanotube Reinforcement in Expandable Graphite Based Intumescent Fire Retardant Coatings Developed Using Hybrid Epoxy Binder System. Chin J Polym Sci 36, 1286–1296 (2018). https://doi.org/10.1007/s10118-018-2148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2148-1

Keywords

Navigation