Skip to main content
Log in

Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Imidazolium-based elastomeric ionomers (i-BIIR) were facilely synthesized by ionically modified brominated poly(isobutylene-co-isoprene) (BIIR) with different alkyl chain imidazole and thoroughly explored as novel toughening agents for poly(lactic acid) (PLA). The miscibility, thermal behavior, phase morphology and mechanical property of ionomers and blends were investigated through dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile and impact testing. DMA and SEM results showed that better compatibility between the PLA and i-BIIR was achieved compared to the PLA/unmodified BIIR elastomer. A remarkable improvement in ductility with an optimum elongation at break up to 235% was achieved for the PLA/i-BIIR blends with 1-dodecylimidazole alkyl chain (i-BIIR-12), more than 10 times higher than that of pure PLA. The impact strengths of PLA were enhanced from 1.9 kJ/m2 to 4.1 kJ/m2 for the PLA/10 wt% i-BIIR-12 blend. Toughening mechanism had been established by systematical analysis of the compatibility, intermolecular interaction and phase structures of the blends. Interfacial cavitations initiated massive shear yielding of the PLA matrix owing to a suitable interfacial adhesion which played a key role in the enormous toughening effect in these blends. We believed that introducing imidazolium group into the BIIR elastomer was vital for the formation of a suitable interfacial adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G. Q.; Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 2012, 112(4), 2082–2099

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, X. Y.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118(2), 839–885

    Article  CAS  PubMed  Google Scholar 

  3. Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4(9), 835–864

    Article  CAS  PubMed  Google Scholar 

  4. Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications -a comprehensive review. Adv. Drug Deliv. Rev. 2016, 107(21), 367–392

    Article  CAS  PubMed  Google Scholar 

  5. Hou, J. Z.; Sun, X. P.; Zhang, W. X.; Li, L. L.; Teng, H. Preparation and characterization of electrospun fibers based on poly(L-lactic acid)/cellulose acetate. Chinese J. Polym. Sci. 2012, 30(6), 916–922

    Article  CAS  Google Scholar 

  6. Yao, C.; Li, X. S.; Neoh, K. G.; Shi, Z. L.; Kang, E. T. Antibacterial poly(D,L-lactide) (PDLLA) fibrous membranes modified with quaternary ammonium moieties. Chinese J. Polym. Sci. 2010, 28(4), 581–588

    Article  CAS  Google Scholar 

  7. Wu, N. J.; Zhang, H.; Fu, G. L. Super-tough poly(lactide) thermoplastic vulcanizates based on modified natural rubber. ACS Sustain. Chem. Eng. 2017, 5(1), 78–84

    Article  CAS  Google Scholar 

  8. Wang, P.; Xu, P.; Wei, H. B.; Fang, H. G.; Ding, Y. S. Effect of block copolymer containing ionic liquid moiety on interfacial polarization in PLA/PCL blends. J. Appl. Polym. Sci. 2018, 10.1002/APP.46161

    Google Scholar 

  9. Delgado, P. A.; Hillmyer, M. A. Combining block copolymers and hydrogen bonding for poly(lactide) toughening. RSC Adv. 2014, 4(26), 13266–13273

    Article  CAS  Google Scholar 

  10. Hao, Y. P.; Ge, H. H.; Han, L. J.; Zhang, H. L.; Dong, L. S.; Sun, S. L. Thermal and mechanical properties of polylactide toughened with a butyl acrylate-ethyl acrylate-glysidyl methacrylate copolymer. Chinese J. Polym. Sci. 2013, 31(11), 1519–1527

    Article  CAS  Google Scholar 

  11. Zhang, K. Toughened sustainable green composites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber. ACS Sustain. Chem. Eng. 2014, 2(10), 2345–2354

    Article  CAS  Google Scholar 

  12. Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32(8), 1099–1110

    Article  CAS  Google Scholar 

  13. Xing, Q.; Li, R. B.; Dong, X.; Zhang, X. Q.; Zhang, L. Y.; Wang, D. J. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: effect of composition and hard segment ratio. Chinese J. Polym. Sci. 2015, 33(9), 1294–1304

    Article  CAS  Google Scholar 

  14. Zhang, K. Y.; Ran, X. H.; Wang, X. M.; Han, C. Y.; Han, L. J.; Wen, X.; Zhuang, Y. G.; Dong, L. S. Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide). Polym. Eng. Sci. 2011, 51(12), 2370–2380

    Article  CAS  Google Scholar 

  15. Yuan, D. S.; Chen, Z. H.; Xu, C. H.; Chen, K. L.; Chen, Y. K. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain. Chem. Eng. 2015, 3(11), 2856–2865

    Article  CAS  Google Scholar 

  16. Zhang, K. Y.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl. Mater. Interfaces 2014, 6(15), 12436–12448

    Article  CAS  PubMed  Google Scholar 

  17. Dong, W. Y.; He, M. F.; Wang, H. T.; Ren, F. L.; Zhang, J. Q.; Zhao, X. W.; Li, Y. J. PLLA/ABS blends compatibilized by reactive comb polymers: double Tg depression and significantly improved toughness. ACS Sustain. Chem. Eng. 2015, 3(10), 2542–2550

    Article  CAS  Google Scholar 

  18. Lin, Y.; Zhang, K. Y.; Dong, Z. M.; Dong, L. S.; Li, Y. S. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 2007, 40(17), 6257–6267

    Article  CAS  Google Scholar 

  19. Han, S. I.; Yoo, Y. T; Kim, D. K.; Im, S. S. Biodegradable aliphatic polyester ionomers. Macromol. Biosci. 2004, 4(3), 199–207

    Article  CAS  Google Scholar 

  20. Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromol. Res. 2010, 18(5), 463–471

    Article  CAS  Google Scholar 

  21. Liu, H. Z.; Chen, F.; Liu, B.; Estep, G.; Zhang, J. W. Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 2010, 43(14), 6058–6066

    Article  CAS  Google Scholar 

  22. Liu, H. Z.; Song, W. J.; Chen, F.; Guo, L.; Zhang, J. W. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011, 44(6), 1513–1522

    Article  CAS  Google Scholar 

  23. Liu, H. Z.; Guo, X. J.; Song, W. J.; Zhang, J. W. Effects of metal ion type on ionomer-assisted reactive toughening of poly(lactic acid). Ind. Eng. Chem. Res. 2013, 52(13), 4787–4793

    Article  CAS  Google Scholar 

  24. Megevand, B.; Pruvost, S.; Lins, L. C.; Livil, S.; Gérard, J. F.; Duchet-Rumeau, J. Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv. 2016, 6(98), 96421–96430

    Article  CAS  Google Scholar 

  25. Lins, L. C.; Livi, S.; Duchet-Rumeau, J.; Gérard, J. F. Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-coterephtalate)/poly(lactic acid) (PBAT/PLA). RSC Adv. 2015, 5(73), 59082–59092

    Article  CAS  Google Scholar 

  26. Wang, P.; Zhang, D.; Zhou, Y. Y.; Li, Y.; Fang, H. G.; Wei, H. B.; Ding, Y. S. A well-defined biodegradable 1,2,3-triazoliumfunctionalized PEG-è-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 2018, 10.1007/s11581-017-2234-3

    Google Scholar 

  27. Jérémy, O.; Jean-Marie, R.; Cédric, S.; Sophie, B.; Apostolos, E.; Dubois, P.; Giannelis, E. P. Shape-memory behavior of polylactide/silica ionic hybrids. Macromolecules 2017, 50(7), 2896–2905

    Article  CAS  Google Scholar 

  28. Livi, S.; Duchet-Rumeau, J.; Gérard, J. F.; Pham, T. N. Polymers and ionic liquids: a successful wedding. Macromol. Chem. Phys. 2015, 216(4), 359–368

    Article  CAS  Google Scholar 

  29. Chen, B. K.; Wu, T. Y.; Chang, Y. M.; Chen, A. F. Ductile polylactic acid prepared with ionic liquids. Chem. Eng. J. 2013, 215–216, 886–893

    Article  CAS  Google Scholar 

  30. Gardella, L.; Furfaro, D.; Galimberti, M.; Monticelli, O. On the development of facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area nanographite systems. Green Chem. 2015, 17(7), 4082–4088

    Article  CAS  Google Scholar 

  31. Cui, J.; Nie, F. M.; Yang, J. X.; Pan, L.; Ma, Z.; Li, Y. S. Novel imidazolium-Based poly(ionic liquid)s with different counter ions for self-healing. J. Mater. Chem. A 2017, 5, 25220–25229

    Article  CAS  Google Scholar 

  32. Le, H. H.; Das, A. Triggering the self-healing properties of modifed bromobutyl rubber by intrinsically electrical heating. Macromol. Mater. Eng. 2017, 302, 1600385

    Article  CAS  Google Scholar 

  33. Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heirich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7(37), 20623–20630

    Article  CAS  PubMed  Google Scholar 

  34. Suckow, M.; Mordvinkin, A.; Roy, M.; Singha, N. K.; Heinrich, G.; Voit, B.; Saalwächter, K.; Böhme, F. Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 2018, 51(2), 468–479

    Article  CAS  Google Scholar 

  35. Meng, Q. Q.; Wang, B.; Pan, L.; Li, Y. S.; Ma, Z. Synthesis and properties of isotactic polypropylene ionomers containing ammonium Ions. Acta Polymerica Sinica (in Chinese) 2017, 11, 1762–1772

    Google Scholar 

  36. Lee, M.; Choi, U. H.; Wi, S.; Slebodnick, C.; Colby, R. H.; Gibson, H. W. 1,2-Bis[iV-(iV′-alkylimidazolium)] ethane salts: a new class of organic ionic plastic crystals. J. Mater. Chem. 2011, 21(33), 12280–12287

    Article  CAS  Google Scholar 

  37. Dakin, J. M.; Shanmugam, K. V. S.; Twigg, C.; Whitney, R. A.; Parent, J. S. Isobutylene-rich macromonomers: dynamics and yields of peroxide-initiated crosslinking. Polym. Chem. 2015, 53(1), 123–132

    Article  CAS  Google Scholar 

  38. Parent, J. S.; Porter, A. M. J.; Kleczek, M. R.; Whitney, R. A. Imidazolium bromide derivatives of poly(isobutylene-coisoprene): a new class of elastomeric ionomers. Polymer 2011, 52(24), 5410–5418

    Article  CAS  Google Scholar 

  39. Kim, A.; Miller, K. M. Synthesis and thermal analysis of crosslinked imidazolium-containing polyester networks prepared by Michael addition polymerization. Polymer 2012, 53(25), 5666–5674

    Article  CAS  Google Scholar 

  40. Ye, Y. S.; Sharick, S.; Davis, E. M.; Winey, K. I.; Elabd, Y. A. High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett. 2013, 2(7), 575–580

    Article  CAS  Google Scholar 

  41. Nykaza, J. R.; Ye, Y. S.; Elabd, Y. A. Polymerized ionic liquid diblock copolymers with long alkyl side-chain length. Polymer 2014, 55(16), 3360–3369

    Article  CAS  Google Scholar 

  42. Wu, J. R.; Huang, G. S.; Pan, Q. Y.; Zheng, J.; Zhu, Y. C.; Wang, B. An investigation on the molecular mobility through the glass transition of chlorinated butyl rubber. Polymer 2007, 48(26), 7653–7659

    Article  CAS  Google Scholar 

  43. Mora-Barrantes, I.; Malmierica, M. A.; Valentin, J. L.; Rodriguez, A.; Ibarra, L. Effect of covalent cross-links on the network structure of thermo-reversible ionic elastomers. Soft Matter 2012, 8(19), 5201–5213

    Article  CAS  Google Scholar 

  44. Marin, N.; Favis, B. D. Co-continuous morphology development in partially miscible PMMA/PC blends. Polymer 2002, 43(17), 4723–4731

    Article  CAS  Google Scholar 

  45. Harrats, C.; Thomas, S. and Groeninckx, G. "Micro-and nanostructured multiphase polymer blends system", CRC Press, 2006, p. 4-33

    Google Scholar 

  46. Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films. Chinese J. Polym. Sci. 2016, 34(9), 1129–1140

    Article  CAS  Google Scholar 

  47. Nagarajan, V. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl. Mater. Interfaces 2015, 7(21), 11203–11214

    Article  CAS  PubMed  Google Scholar 

  48. Yu, F.; Huang, H. X. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym. Test. 2015, 45, 107–113

    Article  CAS  Google Scholar 

  49. Zhang, K. Y.; Mohanty, A. K.; Misra, M. Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl. Mater. Interfaces 2012, 4(6), 3091–3101

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, K. Y.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Super toughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl. Mater. Interfaces 2014, 6(15), 12436–12448.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support by the National Natural Science Foundation of China (No. 51573130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun-Yu Zhang or Yue-Sheng Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hu, K., Sun, ST. et al. Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers. Chin J Polym Sci 36, 1342–1352 (2018). https://doi.org/10.1007/s10118-018-2143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2143-6

Keywords

Navigation