Preparation and Properties of Poly(aryl ether sulfone ketone) Ultrafiltration Membrane Containing Fluorene Group for High Temperature Condensed Water Treatment

Article
  • 1 Downloads

Abstract

Novel poly(aryl ether sulfone ketone)s (PAESK) were synthesized from bisphenol A (BPA), 9,9′-bis(4-hydroxyphenyl) fluorene (BHPF), 4,4′-dichlorodiphenylsulfone (DCS) and 4,4′-difluorobenzophenone (DFB) via nucleophilic substitution polymerization, which were subsequently used to fabricate ultrafiltration membrane by phase-inversion method for high temperature condensed water treatment. The obtained high molecular weight co-polymers with fluorene group with good solubility and good thermal stability, can be easily cast into flexible, white and non-transparent flat films. The influence of molar ratio of BPA and BHPF on the properties of the prepared co-polymers and membranes was investigated in detail. SEM study of the morphology of the membranes indicated that the prepared membranes possessed homogeneous pores on the top surface and were sponge-like or finger-like in cross-section. Pure water flux of the membranes increased from 71.87 L·m−2·h−1 to 247.65 L·m−2·h−1, while the retention of BSA decreased slightly, and the water contact angle decreased from 82.1° to 55.6° with the PVP concentration from 0 wt% to 10 wt%. With increasing concentration of PVP, the mechanical properties of membranes decreased, while the thermal stability increased. The permeate flux measurement showed that the PAESK membrane had the potential for high temperature condensed water treatment.

Keywords

Poly(aryl ether sulfone ketone) Fluorene group Thermal stability Ultrafiltration membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge financial support under Heilongjiang Postdoctoral Fund (No. LBH-Z09175).

References

  1. 1.
    Zhao, S. S.; Wang, P.; Wang, C.; Sun, X.; Zhang, L. H. Thermostable PPESK/TiO2 nanocomposite ultrafiltration membrane for high temperature condensed water treatment. Desalination 2012, 299, 35–43CrossRefGoogle Scholar
  2. 2.
    Leng, S. Purifying techniques of condensed water. Ind. Water Treat. 2010, 30, 64–67Google Scholar
  3. 3.
    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 2006, 51, 1389–1406CrossRefGoogle Scholar
  4. 4.
    Verones, F.; Hanafish, M. M.; Pfister, S.; Huijbregts, M. A. J.; Pelletier G. J.; Koehler, A. Characterization factors for thermal pollution in freshwater aquatic environments. Environ. Sci. Technol. 2010, 44, 9364–9369CrossRefGoogle Scholar
  5. 5.
    Arieli, R. N.; Labin, A. A.; Abramovich, S.; Herat, B. The effect of thermal pollution on benthic foraminiferal assemblages in the mediterranean shoreface adjacent to Hadera power plant (Israel). Mar. Pollut. Bull. 2011, 62, 1002–1012CrossRefGoogle Scholar
  6. 6.
    Zhai, J. W.; Luo, M.; Wang, D.; Wu, Z. Z.; Wu, D. W. Application of high-temperature tolerance membrane in condensation water deep purification and treatment. Chem. Ind. Eng. Prog. 2009, 28, 69–71Google Scholar
  7. 7.
    Yeon, K. H.; Song, J. H.; Moon, S. H. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of nuclear power plant. Water Res. 2004, 38, 1911–1921CrossRefGoogle Scholar
  8. 8.
    Lim, T. T.; Huang, X. F. Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: Comparison of raw and solvent-treated fivers. Ind. Crops Prod. 2007, 26, 125–134CrossRefGoogle Scholar
  9. 9.
    Strathmann, H. Synthetic membranes and their preparation. Noyes Publications, New Jersey, 1990Google Scholar
  10. 10.
    Coutinho, C. M.; Chiu, M. C.; Basso, R. C.; Ribeiro, A. P. B.; Goncalves, L. A. G.; Viotto, L.A. State of art of the application of membrane technology to vegetable oils: A review. Food Res. Int. 2009, 42, 536–550CrossRefGoogle Scholar
  11. 11.
    Yang, D. L.; Jin, Z.; Zhang, S. H.; Jian, X. G. Preparation and characterazition of poly(phthalazinone ether sulfone ketone) hollow fiber ultrafiltration membrane with high-molecular weight cut-off. J. Membr. Sci. 2007, 306, 253–260CrossRefGoogle Scholar
  12. 12.
    Yun, Y. B.; Tian, Y. H.; Shi, G. L.; Li, J. D.; Chen, C. X. Preparation, morphologies and properties for flat sheet PPESK ultrafiltration membranes. J. Membr. Sci. 2006, 270, 146–153CrossRefGoogle Scholar
  13. 13.
    Jian, X. G.; Yan, C.; Zhang, H. M.; Zhang, S. H.; Liu, C.; Zhao, P. Syethesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion exchange membrane. Chin. Chem. Lett. 2007, 18, 1269–1272CrossRefGoogle Scholar
  14. 14.
    Sun, W. N.; Chen, C. X.; Li, J. D.; Lin, Y. Z. Ultrafiltration membrane formation of PES-C, PES and PPESK polymers with different solvents. Chinese J. Polym. Sci. 2009, 27, 165–172CrossRefGoogle Scholar
  15. 15.
    Zhu, L. P.; Xu, Y. Y.; Wei, X. Z.; Zhu, B. K. Hydrophilic modification of poly(phthalazine ether sulfone ketone) ultrafiltration membranes by the surface immobilization of poly(ethylene glycol) acrylates. Desalination 2009, 242, 96–109CrossRefGoogle Scholar
  16. 16.
    Shimura, T.; Miyatake, K.; Watanabe, M. Poly(arylene ether) ionomers containing sulfofluorenyl groups: Effect of electronwithdrawing groups on the properties. Eur. Polym. J. 2008, 44, 4054–4062CrossRefGoogle Scholar
  17. 17.
    Harrison, W. L.; Wang, F.; Mecham, J. B.; Bhanu, V. A.; Hill, M.; Kim, Y. S.; McGrath, J. E. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2264–2276CrossRefGoogle Scholar
  18. 18.
    Zhu, L. P.; Du, C. H.; Xu, L.; Feng, Y. X.; Zhu, B. K.; Xu, Y. Y. Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes. Eur. Polym. J. 2007, 43, 1383–1393CrossRefGoogle Scholar
  19. 19.
    Palaniappan, S. Benzoyl peroxide as a novel oxidizing agent in polyaniline dispersion: Synthesis and characterization of a pure polyaniline-poly(vinyl pyrrolidone) composite. J. Appl. Polym. Sci. 2008, 108, 825–832CrossRefGoogle Scholar
  20. 20.
    Chakrabarty, B.; Ghoshal, A. K.; Purkait, A. K. Preparation, Characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 2008, 315, 36–47CrossRefGoogle Scholar
  21. 21.
    Han, M. J.; Nam, S. T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J. Membr. Sci. 2002, 202, 55–61CrossRefGoogle Scholar
  22. 22.
    Smolders, C. A.; Reuvers, A. J.; Boom, R. M.; Wienk, I. M. Microstructures in phase inversion membranes. Part 1. Formation of macrovoids.. J. Membr. Sci. 1992, 73, 259–275CrossRefGoogle Scholar
  23. 23.
    Liu, H. Y.; Zhang, G. Q.; Zhao, C. Q.; Liu, J. D.; Yang, F. L. Hydraulic power and electric field combined antifouling effect of a novel conductive poly(aminoanthraquinone)/reduced grapheme oxide nanohybrid blended PVDF ultrafiltration membrane. J. Mater. Chem. A 2015, 3, 20277–20287CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations