Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 10, pp 1168–1174 | Cite as

Massive Preparation of Coumarone-indene Resin-based Hyper-crosslinked Polymers for Gas Adsorption

  • Ke Tian
  • Ting-Ting Zhu
  • Ping Lan
  • Zheng-Chen Wu
  • Wei Hu
  • Fei-Fei Xie
  • Lei Li
Article

Abstract

Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage because of their low cost and easy preparation. In this work, we report the massive preparation of coumarone-indene resin-based hyper-crosslinked polymers via one-step Friedel-Crafts alkylation. Low-cost coumarone-indene resin serves as the new building block and chloroform is employed as both solvent and external crosslinker. A maximum surface area of 966 m2·g−1 is achieved, which is comparable with that of previously-reported coal tar-based porous organic polymers. Most importantly, a large number of heteroatoms including inherent oxygen atoms and introduced chlorine atoms in obtianed HCPs further enhance the interaction between specific sorbate molecule and adsorbent. Therefore, optimal structural and chemical property endow the new coumarone-indene resin-based HCPs with decent gas storage capacity (14.60 wt% at 273 K and 0.1 MPa for CO2; 1.18 wt% at 77.3 K and 0.1 MPa for H2). These results demonstrate that new HCPs are potential candidates for applications in CO2 and H2 capture.

Keywords

Coumarone-indene resin Friedel-Crafts alkylation Gas adsorption Microporous organic polymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51373143 and 21674087) and the Natural Science Foundation of Fujian Province (No. 2014J07002).

Supplementary material

10118_2018_2127_MOESM1_ESM.pdf (816 kb)
Massive Preparation of Coumarone-indene Resin-Based Hyper-crosslinked Polymers for Gas Adsorption

References

  1. 1.
    Xu, F.; Tang, Z.; Huang, S.; Chen, L.; Liang, Y.; Mai, W.; Zhong, H.; Fu, R.; Wu, D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 6, 7221.CrossRefGoogle Scholar
  2. 2.
    Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo-and biosensing. Angew. Chem. Int. Ed. 2014, 53(19), 4850–4855.CrossRefGoogle Scholar
  3. 3.
    Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lv, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang, F.; Ma, Y. Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv. Mater. 2013, 25(25), 3443–3448.CrossRefGoogle Scholar
  4. 4.
    Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D. J. Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem. Commun. 2010, 46(25), 4547–4549.CrossRefGoogle Scholar
  5. 5.
    Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation. Adv. Mater. 2012, 24(44), 5930.CrossRefGoogle Scholar
  6. 6.
    McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35(8), 675–683.CrossRefGoogle Scholar
  7. 7.
    Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46(45), 8574–8578.CrossRefGoogle Scholar
  8. 8.
    Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42(2), 548–568.CrossRefGoogle Scholar
  9. 9.
    Li, B. Y.; Gong, R. N.; Wang, W.; Huang, X.; Zhang, W.; Li, H. M.; Hu, C. X.; Tan, B. E. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011, 44(8), 2410–2414.CrossRefGoogle Scholar
  10. 10.
    Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Porous, Fluorescent, Covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 2012, 24(17), 2357–2361.CrossRefGoogle Scholar
  11. 11.
    Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 2017, 46(11), 3322–3356.CrossRefGoogle Scholar
  12. 12.
    Li, L. N.; Ren, H.; Yuan, Y.; Yu, G. L.; Zhu, G. S. Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J. Mater. Chem. A 2014, 2(29), 11091–11098.CrossRefGoogle Scholar
  13. 13.
    Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 2013, 42(20), 8012–8031.CrossRefGoogle Scholar
  14. 14.
    Ghanem, B. S.; Msayib, K. J.; McKeown, N. B.; Harris, K. D. M.; Pan, Z.; Budd, P. M.; Butler, A.; Selbie, J.; Book, D.; Walton, A. A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chem. Commun. 2007, (1), 67–69.CrossRefGoogle Scholar
  15. 15.
    Wang, S. L.; Tan, L. X.; Zhang, C. X.; Hussain, I.; Tan, B. E. Novel POSS-based organic-inorganic hybrid porous materials by low cost strategies. J. Mater. Chem. A 2015, 3(12), 6542–6548.CrossRefGoogle Scholar
  16. 16.
    Tian, Z. H.; Huang, J. J.; Zhang, Z. L.; Shao, G. L.; Liu, A.; Yuan, S. G. Organic-inorganic hybrid microporous polymers based on octaphenylcyclotetrasiloxane: synthesis, carbonization and adsorption for CO2. Microporous Mesoporous Mater. 2016, 234, 130–136.CrossRefGoogle Scholar
  17. 17.
    Zhu, J. H.; Chen, Q.; Sui, Z. Y.; Pan, L.; Yu, J. G.; Han, B. H. Preparation and adsorption performance of cross-linked porous polycarbazoles. J. Mater. Chem. A 2014, 2(38), 16181–16189.CrossRefGoogle Scholar
  18. 18.
    Msayib, K. J.; McKeown, N. B. Inexpensive polyphenylene network polymers with enhanced microporosity. J. Mater. Chem. A 2016, 4(26), 10110–10113.CrossRefGoogle Scholar
  19. 19.
    Meng, Q. B.; Weber, J. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation. ChemSusChem 2014, 7(12), 3312–3318.CrossRefGoogle Scholar
  20. 20.
    Modak, A.; Maegawa, Y.; Goto, Y.; Inagaki, S. Synthesis of 9,9′-spirobifluorene-based conjugated microporous polymers by FeCl3-mediated polymerization. Polym. Chem. 2016, 7(6), 1290–1296.CrossRefGoogle Scholar
  21. 21.
    Li, W.; Zhang, A.; Gao, H.; Chen, M.; Liu, A.; Bai, H.; Li, L. Massive preparation of pitch-based organic microporous polymers for gas storage. Chem. Commun. 2016, 52(13), 2780–2783.CrossRefGoogle Scholar
  22. 22.
    Gao, H.; Ding, L.; Bai, H.; Li, L. Microporous organic polymers based on hyper-crosslinked coal tar: preparation and application for gas adsorption. ChemSusChem 2017, 10(3), 618–623.CrossRefGoogle Scholar
  23. 23.
    Li, B. Y.; Guan, Z. H.; Yang, X. J.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K. P.; Tan, B. E.; Li, T. Multifunctional microporous organic polymers. J. Mater. Chem. A 2014, 2(30), 11930–11939.CrossRefGoogle Scholar
  24. 24.
    Gao, H.; Ding, L.; Bai, H.; Liu, A. H.; Li, S. Z.; Li, L. Pitchbased hyper-cross-linked polymers with high performance for gas adsorption. J. Mater. Chem. A 2016, 4(42), 16490–16498.CrossRefGoogle Scholar
  25. 25.
    Pan, L.; Chen, Q.; Zhu, J. H.; Yu, J. G.; He, Y. J.; Han, B. H. Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel-Crafts alkylation. Polym. Chem. 2015, 6(13), 2478–2487.CrossRefGoogle Scholar
  26. 26.
    Ben, T.; Li, Y.; Zhu, L.; Zhang, D.; Cao, D.; Xiang, Z.; Yao, X.; Qiu, S. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ. Sci. 2012, 5(8), 8370–8376.CrossRefGoogle Scholar
  27. 27.
    Zhang, D.; Tao, L. M.; Wang, Q. H.; Wang, T. M. A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers. Polymer 2016, 82, 114–120.CrossRefGoogle Scholar
  28. 28.
    Luo, Y. L.; Zhang, S. C.; Ma, Y. X.; Wang, W.; Tan, B. Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym. Chem. 2013, 4(4), 1126–1131.CrossRefGoogle Scholar
  29. 29.
    Gao, H.; Ding, L.; Li, W. Q.; Ma, G. F.; Bai, H.; Li, L. Hypercross-linked organic microporous polymers based on alternating copolymerization of bismaleimide. ACS Macro Lett. 2016, 5(3), 377–381.CrossRefGoogle Scholar
  30. 30.
    Kou, J.; Sun, L. B. Fabrication of nitrogen-doped porous carbons for highly efficient CO2 capture: rational choice of a polymer precursor. J. Mater. Chem. A 2016, 4(44), 17299–17307.CrossRefGoogle Scholar
  31. 31.
    Rabbani, M. G.; El-Kaderi, H. M. Template-free Synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem. Mater. 2011, 23(7), 1650–1653.CrossRefGoogle Scholar
  32. 32.
    Martin, C. F.; Stoeckel, E.; Clowes, R.; Adams, D. J.; Cooper, A. I.; Pis, J. J.; Rubiera, F.; Pevida, C. Hypercrosslinked organic polymer networks as potential adsorbents for precombustion CO2 capture. J. Mater. Chem. 2011, 21(14), 5475–5483.CrossRefGoogle Scholar
  33. 33.
    Ren, X.; Li, H.; Chen, J.; Wei, L.; Modak, A.; Yang, H.; Yang, Q. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon 2017, 114, 473–481.CrossRefGoogle Scholar
  34. 34.
    Lin, Y.; Xiong, K.; Lu, Z.; Liu, S.; Zhang, Z.; Lu, Y.; Fu, R.; Wu, D. Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks for antibacterial application. Chem. Commun. 2017, 53(70), 9777–9780.CrossRefGoogle Scholar
  35. 35.
    Li, G.; Zhang, B.; Wang, Z. Facile synthesis of fluorinated microporous polyaminals for adsorption of carbon dioxide and selectivities over nitrogen and methane. Macromolecules 2016, 49(7), 2575–2581.CrossRefGoogle Scholar
  36. 36.
    Wang, Z. G.; Liu, X.; Wang, D.; Jin, J. Troger’s base-based copolymers with intrinsic microporosity for CO2 separation and effect of Troger’s base on separation performance. Polym. Chem. 2014, 5(8), 2793–2800.CrossRefGoogle Scholar
  37. 37.
    Yang, X.; Yao, S.; Yu, M.; Jiang, J. X. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine. Macromol. Rapid Commun. 2014, 35(8), 834–839.CrossRefGoogle Scholar
  38. 38.
    Zhu, Y.; Long, H.; Zhang, W. Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem. Mater. 2013, 25(9), 1630–1635.CrossRefGoogle Scholar
  39. 39.
    Ashourirad, B.; Arab, P.; Verlander, A.; El-Kaderi, H. M. From azo-linked polymers to microporous heteroatom-doped carbons: tailored chemical and textural properties for gas separation. ACS Appl. Mater. Interfaces 2016, 8(13), 8491–8501.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials and Fujian Provincial Key Laboratory of Materials GenomeXiamen UniversityXiamenChina
  2. 2.Material and Textile CollegeJiaxing UniversityJiaxingChina

Personalised recommendations