Skip to main content

Advertisement

Log in

A Soft Shape Memory Reversible Dry Adhesive

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Transfer printing is a critical procedure for manufacturing stretchable electronics. During such a procedure, stamps are utilized to transfer micro devices from silicon wafers to stretchable polymeric substrates. In addition to conventional silicone rubber stamps, epoxy resin based shape memory stamps have been developed and the transfer yield is thus significantly promoted. However, elastic modulus of the epoxy stamps is too high at both glassy and rubbery states, which may break the brittle micro devices during the adhesion process under mechanical pressure. In this work, we synthesized a copolymer of butyl acrylate (BA) and polycaprolactone diacrylate (PCLDA) as a soft reversible dry adhesive enabling a shape memory capability based on crystalline transition of polycaprolactone (PCL) segments. For the sample containing 40 wt% BA and 60 wt% PCLDA, Young’s modulus was 8.3 and 0.9 MPa respectively below and above the thermal transition temperature, which was much lower than that of the epoxy adhesive. On the other hand, the soft material still provided nearly ideal shape memory fixity and recovery ratios. Subsequently, shape memory surface with cone-shaped microstructure was prepared, which enabled a heating induced strong-to-weak adhesion transition when the microstructure recovered from a pressed temporary morphology to the permanent cone-shaped morphology. Such a soft reversible dry adhesive may contribute to large-scale and automated transfer printing processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsutsui, T.; Fujita, K. The shift from “hard” to “soft” electronics. Adv. Mater. 2002, 14(13-14), 949–952.

    Article  CAS  Google Scholar 

  2. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S.; Someya, T. An ultralightweight design for imperceptible plastic electronics. Nature 2013, 499(7459), 458–463.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, D. H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 2010, 22(19), 2108–2124.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, D. H.; Rogers, J. A. Stretchable electronics: materials strategies and devices. Adv. Mater. 2008, 20(24), 4887–4892.

    Article  CAS  Google Scholar 

  5. Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327(5973), 1603–1607.

    Article  CAS  PubMed  Google Scholar 

  6. Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24(39), 5284–5318.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, H.; Zhao, D.; Chuwongin, S.; Seo, J. H.; Yang, W.; Shuai, Y.; Berggren, J.; Hammar, M.; Ma, Z.; Zhou, W. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 2012, 6(9), 615–620.

    Article  CAS  Google Scholar 

  8. Meitl, M. A.; Zhu, Z.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y.; Adesida, I.; Nuzzo, G. R.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5(1), 33–38.

    Article  CAS  Google Scholar 

  9. Xie, T.; Xiao, X. Self-peeling reversible dry adhesive system. Chem. Mater. 2008, 20(9), 2866–2868.

    Article  CAS  Google Scholar 

  10. Wang, R.; Xiao, X.; Xie, T. Viscoelastic behavior and force nature of thermo-reversible epoxy dry adhesives. Macromol. Rapid Commun. 2010, 31(3), 295–299.

    Article  CAS  PubMed  Google Scholar 

  11. Xu, H.; Yu, C.; Wang, S.; Malyarchuk, V.; Xie, T.; Rogers, J. A. Deformable, programmable, and shapememorizing micro optics. Adv. Funct. Mater. 2013, 23(26), 3299–3306.

    Article  CAS  Google Scholar 

  12. Huang, Y.; Zheng, N.; Cheng, Z.; Chen, Y.; Lu, B.; Xie, T.; Feng, X. Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive. ACS Appl. Mater. Interfaces 2016, 8(51), 35628–35633.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49–50, 79–120.

    Article  CAS  Google Scholar 

  14. Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 2011, 56(7), 1077–1135.

    Article  CAS  Google Scholar 

  15. Gu, S. Y.; Gao, X. F.; Jin, S. P.; Liu, Y. L. Biodegradable shape memory polyurethanes with controllable trigger temperature. Chinese J. Polym. Sci. 2016, 34(6), 720–729.

    Article  CAS  Google Scholar 

  16. Liao, J. X.; Huang, J. H.; Wang, T., Sun; W. X.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297–1306.

    Article  CAS  Google Scholar 

  17. Eisenhaure, J. D.; Xie, T.; Varghese, S.; Kim, S. Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl. Mater. Interfaces 2013, 5(16), 7714–7717.

    Article  CAS  PubMed  Google Scholar 

  18. Xie, T.; Rousseau, I. A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 2009, 50, 1852–1856.

    Article  CAS  Google Scholar 

  19. Zheng, N.; Fang, G.; Cao, Z.; Zhao, Q.; Xie, T. High strain epoxy shape memory polymer. Polym. Chem. 2015, 6, 3046–3053.

    Article  CAS  Google Scholar 

  20. Zhao, R.; Zhao, T.; Jiang, X.; Liu, X.; Shi, D.; Liu, C.; Yang, S.; Chen, E. Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater. 2017, 29(12), 1605908.

    Article  CAS  Google Scholar 

  21. Zhang, G.; Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Unusual aspects of supramolecular networks: plasticity to elasticity, ultrasoft shape memory, and dynamic mechanical properties. Adv. Funct. Mater. 2016, 26(6), 931–937.

    Article  CAS  Google Scholar 

  22. Lendlein, A.; Schmidt, A. M.; Langer, R. AB-polymer networks based on oligo (ε-caprolactone) segments showing shape-memory properties. Proc. Natl. Acad. Sci. 2001, 98(3), 842–847.

    CAS  PubMed  Google Scholar 

  23. Saatchi, M.; Behl, M.; Nöchel, U.; Lendlein, A. Copolymer networks from oligo (ε-caprolactone) and nbutyl acrylate enable a reversible bidirectional shapememory effect at human body temperature. Macromol. Rapid Commun. 2015, 36(10), 880–884.

    Article  CAS  PubMed  Google Scholar 

  24. Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003, 24(5), 801–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21504077 and 51673169), Natural Science Foundation of Zhejiang Province for Distinguished Young Scholar (No. LR18E030001), and National Key Basic Research Program of China (No. 2015CB351903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, JT., Zou, WK., Chen, F. et al. A Soft Shape Memory Reversible Dry Adhesive. Chin J Polym Sci 36, 953–959 (2018). https://doi.org/10.1007/s10118-018-2119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2119-6

Keywords

Navigation