Skip to main content

Advertisement

Log in

The Silk Textile Embedded in Silk Fibroin Composite: Preparation and Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Silk reinforced silk-fibroin-based composites were prepared by embedding of silk textile into regenerated silk fibroin (RSF) matrix. The breaking stress and breaking strain of the composites were found 37.7 MPa and 71.1% respectively at (95 ± 5)% RH. Morphological analysis was carried out to observe fracture behavior of the samples. The in vitro biodegradation test showed that the composite degraded slowly and lost 70% weight at the end of 168 h. Moreover, compared with RSF pure film, the composite kept strength and toughness much longer time. In conclusion, this composite has the potential for more accurate cytology research and biomedical tests in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Silk-based biomaterials. Biomaterials 2003, 24(3), 401–416

    Article  CAS  PubMed  Google Scholar 

  2. Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6(10), 1612–1631

    Article  CAS  PubMed  Google Scholar 

  3. Sun, H. X.; Wang, S.; Zhu, H. S. Surface modification of blend films composed of silk fibroin and poly(ethylene glycol) macromer and their in vitro antithrombogenicity. Chinese J. Polym. Sci. 2004, 22(4), 399–403

    CAS  Google Scholar 

  4. Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016, 31, 1–16

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Q.; Yang, Y. H.; Chen, X.; Shao, Z. Z. Investigation of rheological properties and conformation of silk fibroin in the solution of AmimCl. Biomacromolecules 2012, 13(6), 1875–1881

    Article  CAS  PubMed  Google Scholar 

  6. Hu, X.; Kaplan, D. L.; Cebe, P. Effect of water on the thermal properties of silk fibroin. Thermochim. Acta 2007, 461, 137–144

    Article  CAS  Google Scholar 

  7. Motta, A.; Fambri, L.; Migliaresi, C. Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol. Chem. Phys. 2002, 203, 1658–1665

    Article  CAS  Google Scholar 

  8. Faruk, O. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596

    Article  CAS  Google Scholar 

  9. Yao, H.; Niu, J. L.; Zhang, J.; Ning, N. Y.; Yang, X. Q.; Tian, M.; Sun, X. L.; Zhang, L. Q.; Yan, S. L. Morphologies and mechanical properties of cis-1,4-butadiene rubber/polyethylene blends. Chinese J. Polym. Sci. 2016, 34(7), 820–829

    Article  CAS  Google Scholar 

  10. Azwa, Z.; Yousif, B.; Manalo, A.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Design 2013, 47(9), 424–442

    Article  CAS  Google Scholar 

  11. Han, S. O.; Lee, S. M.; Park, W. H.; Cho, D. Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. J. Appl. Polym. Sci. 2006, 100, 4972–4980

    Article  CAS  Google Scholar 

  12. Yuan, Q. Q.; Yao, J. R.; Chen, X.; Huang, L.; Shao, Z. Z. The preparation of high performance silk fiber/fibroin composite. Polymer 2010, 51, 4843–4849

    Article  CAS  Google Scholar 

  13. Luo, K. Y.; Yang, Y. H.; Shao, Z. Z. Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv. Funct. Mater. 2016, 26, 872–880

    Article  CAS  Google Scholar 

  14. Zhou, H.; Shao, Z. Z.; Chen, X. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber. Chinese J. Polym. Sci. 2014, 32(1), 29–34

    Article  CAS  Google Scholar 

  15. Numata, K.; Cebe, P.; Kaplan, D. L. Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 2010, 31, 2926–2933

    Article  CAS  PubMed  Google Scholar 

  16. Porter, D.; Vollrath, F.; Tian, K.; Chen, X.; Shao, Z. Z. A kinetic model for thermal degradation in polymers with specific application to proteins. Polymer 2009, 50(7), 1814–1818

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21574024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Zhong Shao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Chen, X. & Shao, ZZ. The Silk Textile Embedded in Silk Fibroin Composite: Preparation and Properties. Chin J Polym Sci 36, 1043–1046 (2018). https://doi.org/10.1007/s10118-018-2117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2117-8

Keywords

Navigation