Chinese Journal of Polymer Science

, Volume 36, Issue 7, pp 880–887 | Cite as

Vertically Oriented Microporous Membranes Prepared by Bidirectional Freezing

  • Sen-He Chen
  • Bai-Heng Wu
  • Jin-Cheng Fu
  • Guo-Jun Wang
  • Ling-Shu Wan
  • Zhi-Kang Xu


Polystyrene membranes with precisely controlled and vertically oriented pores are fabricated by a bidirectional freezing process. In this process, the influence of polymer in growth of diphenyl sulfone (DPS) crystals has been demonstrated by XRD and simulated by DFT based on the interaction between DPS crystal faces and polystyrene (PS). The influence of temperature gradient on membrane structures is also elucidated. Compared to the original membrane and modified traditional membranes, modified PS membranes with vertically oriented pores show large and stable fluxes in the processes of multiple oil and water separation.


Separation membrane Vertical pores Bidirectional freezing Oil separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51522305 and 21374100) and the Fundamental Research Funds for the Central Universities (No. 2015XZZX004-26).

Supplementary material

10118_2018_2113_MOESM1_ESM.pdf (2.2 mb)
Vertically Oriented Microporous Membranes Prepared by Bidirectional Freezing


  1. 1.
    Li, J. H.; Zhang, D. B.; Ni, X. X.; Zheng, H.; Zhang, Q. Q. Excellent hydrophilic and anti-bacterial fouling PVDF membrane based on ag nanoparticle self-assembled PCBMA polymer brush. Chinese J. Polym. Sci. 2017, 35(7), 809–822.CrossRefGoogle Scholar
  2. 2.
    Tian, X.; Wang, Z.; Zhao, S.; Li, S.; Wang, J.; Wang, S. The influence of the nonsolvent intrusion through the casting film bottom surface on the macrovoid formation. J. Membr. Sci. 2014, 464, 8–19.CrossRefGoogle Scholar
  3. 3.
    Liang, H. Q.; Li, H. N.; Yu, H. H.; Zhou, Y. T.; Xu, Z. K. Polysulfone membranes via thermally induced phase separation. Chinese J. Polym. Sci. 2017, 35(7), 846–856.CrossRefGoogle Scholar
  4. 4.
    Zhang, M.; Zhang, C. F.; Yao, Z. K.; Shi, J. L.; Zhu, B. K.; Xu, Y. Y. Preparation of high density polyethylene/polyethyleneblock-poly(ethylene glycol) copolymer blend porous membranes via thermally induced phase separation process and their properties. Chinese J. Polym. Sci. 2010, 28(3), 337–346.CrossRefGoogle Scholar
  5. 5.
    Liu, M.; Chen, D. G.; Xu, Z. L.; Wei, Y. M.; Tong, M. Effects of nucleating agents on the morphologies and performances of poly(vinylidene fluoride) microporous membranes via thermally induced phase separation. J. Appl. Polym. Sci. 2013, 128(1), 836–844.CrossRefGoogle Scholar
  6. 6.
    Mu, C.; Su, Y.; Sun, M.; Chen, W.; Jiang, Z. Fabrication of microporous membranes by a feasible freeze method. J. Membr. Sci. 2010, 361(1-2), 15–21.CrossRefGoogle Scholar
  7. 7.
    Ou, Y.; Lv, C. J.; Yu, W.; Mao, Z. W.; Wan, L. S.; Xu, Z. K. Fabrication of perforated isoporous membranes via a transferfree strategy: Enabling high-resolution separation of cells. ACS Appl. Mater. Interfaces 2014, 6(24), 22400–22407.CrossRefGoogle Scholar
  8. 8.
    Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. Using soft lithography to pattern highly oriented polyacetylene (HOPA) films via solventless polymerization. Adv. Mater. 2004, 16(15), 1356–1359.CrossRefGoogle Scholar
  9. 9.
    Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat. Mater. 2004, 3(5), 337–341.CrossRefGoogle Scholar
  10. 10.
    Quake, S. R.; Scherer, A. From micro-to nanofabrication with soft materials. Science 2000, 290(5496), 1536–1540.CrossRefGoogle Scholar
  11. 11.
    Xu, C. Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 2004, 25(5), 877–886.CrossRefGoogle Scholar
  12. 12.
    Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4(10), 787–793.CrossRefGoogle Scholar
  13. 13.
    Wu, J.; Zhao, Q.; Sun, J.; Zhou, Q. Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter 2012, 8(13), 3620–3626.CrossRefGoogle Scholar
  14. 14.
    Ma, H.; Hu, J.; Ma, P. X. Polymer scaffolds for small-diameter vascular tissue engineering. Adv. Funct. Mater. 2010, 20(17), 2833–2841.CrossRefGoogle Scholar
  15. 15.
    Kim, B. S.; Lee, J. Directional crystallization of dioxane in the presence of PVDF producing porous membranes. J. Cryst. Growth. 2013, 373, 45–49.CrossRefGoogle Scholar
  16. 16.
    Kim, B. S.; Lee, M. K.; Lee, J. Large-area PVDF membranes with through-thickness porosity prepared by uni-directional freezing. Macromol. Res. 2013, 21(2), 194–201.CrossRefGoogle Scholar
  17. 17.
    Mandoli, C.; Mecheri, B.; Forte, G.; Pagliari, F.; Pagliari, S.; Carotenuto, F.; Fiaccavento, R.; Rinaldi, A.; Di Nardo, P.; Licoccia, S.; Traversa, E. Thick soft tissue reconstruction on highly perfusive biodegradable scaffolds. Macromol. Biosci. 2010, 10(2), 127–138.CrossRefGoogle Scholar
  18. 18.
    Wang, B.; Ji, J.; Li, K. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration. Nat. Commun. 2016, 7, 12804.CrossRefGoogle Scholar
  19. 19.
    Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphenepolymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21(21), 2180–2184.CrossRefGoogle Scholar
  20. 20.
    Liang, H. Q.; Ji, K. J.; Zha, L. Y.; Hu, W. B.; Ou, Y.; Xu, Z. K. Polymer membranes with vertically oriented pores constructed by 2D freezing at ambient temperature. ACS Appl. Mater. Interfaces 2016, 8(22), 14174–14181.CrossRefGoogle Scholar
  21. 21.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A. Gaussian 09. Gaussian, Inc., Wallingford CT, 2010.Google Scholar
  22. 22.
    Qian, L.; Zhang, H. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 2011, 86(2), 172–184.CrossRefGoogle Scholar
  23. 23.
    Kim, J. W.; Tazumi, K.; Okaji, R.; Ohshima, M. Honeycomb monolith-structured silica with highly ordered, threedimensionally interconnected macroporous walls. Chem. Mater. 2009, 21(15), 3476–3478.CrossRefGoogle Scholar
  24. 24.
    Chu, Z.; Feng, Y.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 2015, 54(8), 2328–2338.CrossRefGoogle Scholar
  25. 25.
    Cui, P.; Jing, X. F.; Yuan, Y.; Zhu, G. S. Synthesis of porous aromatic framework with Friedel-Crafts alkylation reaction for CO2 separation. Chinese Chem. Lett. 2016, 27(9), 1479–1484.CrossRefGoogle Scholar
  26. 26.
    Yang, H. C.; Hou, J.; Chen, V.; Xu, Z. K. Janus membranes: exploring duality for advanced separation. Angew. Chem. Int. Ed. 2016, 55(43), 13398–13407.CrossRefGoogle Scholar
  27. 27.
    Wu, M. B.; Yang, H. C.; Wang, J. J.; Wu, G. P.; Xu, Z. K. Janus membranes with opposing surface wettability enabling oil-to-water and water-to-oil emulsification. ACS Appl. Mater. Interfaces 2017, 9(6), 5062–5066.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sen-He Chen
    • 1
    • 2
  • Bai-Heng Wu
    • 1
    • 2
  • Jin-Cheng Fu
    • 1
    • 2
  • Guo-Jun Wang
    • 1
    • 2
  • Ling-Shu Wan
    • 1
    • 2
  • Zhi-Kang Xu
    • 1
    • 2
  1. 1.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Adsorption and Separation Materials &Technologies of Zhejiang ProvinceZhejiang UniversityHangzhouChina

Personalised recommendations