Chinese Journal of Polymer Science

, Volume 36, Issue 8, pp 984–990 | Cite as

Dewetting Kinetics of Thin Polymer Films with Different Architectures: Effect of Polymer Adsorption

  • Li-Na Wang
  • Huan-Huan Zhang
  • Lin Xu
  • Bin-Yuan Liu
  • Tong-Fei Shi
  • Shi-Chun Jiang
  • Li-Jia An


We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film (LPS), the 3-arm star polystyrene film (3SPS) and the ring polystyrene film (RPS) on the silanized Si substrate. Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films. On the silanized Si substrate, the 3SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result, the wetting layer forms more easily. For LPS films, with the decrease of annealing temperature, the kinetics of polymer film changes from exponential behavior to slip dewetting. As a comparison, the stability of 3SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior. The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting. Additionally, Brownian dynamics (BD) simulation shows that the absolute values of adsorption energy (ε) gradually increase from linear polymer (−0.3896) to ring polymer (−0.4033) and to star polymer (−0.4264), which is consistent with the results of our adsorption experiments.


Thin polymer film Star polystyrene Ring polystyrene Dewetting Adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Dr. Ming-Ming Ding for help with Brownian dynamics simulations. This work was financially supported by the National Natural Science Foundation of China (Nos. 51473168, 21234007, 21674114, 51503048, 51573131 and 21374077) and the grant of Guizhou Education University (No. 107003001455) and the Natural Science Foundation of Guizhou Province (No. QKHJC[ 2017]1137).


  1. 1.
    Cai, X.; Yuan, H.; Blencowe, A.; Qiao, G. G.; Genzer, J.; Spontak, R. J. Film-stabilizing attributes of polymeric core-shell nanoparticles. ACS Nano 2015, 9(8), 7940–7949.CrossRefGoogle Scholar
  2. 2.
    Roy, S.; Bandyopadhyay, D.; Karim, A.; Mukherjee, R. Interplay of substrate surface energy and nanoparticle concentration in suppressing polymer thin film dewetting. Macromolecules 2015, 48(2), 373–382.CrossRefGoogle Scholar
  3. 3.
    Luo, H.; Gersappe, D. Dewetting dynamics of nanofilled polymer thin films. Macromolecules 2004, 37(15), 5792–5799.CrossRefGoogle Scholar
  4. 4.
    Feng, Y.; Karim, A.; Weiss, R. A.; Douglas, J. F.; Han, C. C. Control of polystyrene film dewetting through sulfonation and metal complexation. Macromolecules 1998, 31(2), 484–493.CrossRefGoogle Scholar
  5. 5.
    Henn, G.; Bucknall, D. G.; Stamm, M.; Vanhoorne, P.; Jérôme, R. Chain end effects and dewetting in thin polymer films. Macromolecules 1996, 29(12), 4305–4313.CrossRefGoogle Scholar
  6. 6.
    Li, S. J.; Zhang, W. X.; Jiang, F.; Lu, Y. Y.; Shi, T. F.; An, L. J. Dynamics of hole growing in polymer thin films during dewetting. Acta Polymerica Sinica (in Chinese) 2014, 24(9), 1174–1182.Google Scholar
  7. 7.
    Wang, W. C.; Shi, K., Pan, Y. X.; Peng, C.; Zhao, Z. L.; Liu, W.; Liu, Y. G.; Ji, X. L. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets. Chinese J. Polym. Sci. 2016, 34(4), 475–482.CrossRefGoogle Scholar
  8. 8.
    Zhu, D. S.; Liu, Y. X.; Chen, E. Q.; Li, M.; Cheng, S. Z. D. Pseudo-dewetting behavior of low molecular weight poly(ethylene oxide) melts on mica surface. Acta Polymerica Sinica (in Chinese) 2006, (9), 1125–1128.Google Scholar
  9. 9.
    Mukherjee, R. Instability, self-organization and pattern formation in thin soft films. Soft Matter 2015, 11(45), 8717–8740.CrossRefGoogle Scholar
  10. 10.
    Roy, S.; Bandyopadhyay, D.; Karim, A.; Mukherjee, R. Interplay of substrate surface energy and nanoparticle concentration in suppressing polymer thin film dewetting. Macromolecules 2015, 48(2), 373–382.CrossRefGoogle Scholar
  11. 11.
    Mukherjee, R.; Das, S.; Das, A.; Sharma, S. K.; Raychaudhuri, A. K.; Sharma, A. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics. ACS Nano 2010, 4(7), 3709–3724.CrossRefGoogle Scholar
  12. 12.
    Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251.CrossRefGoogle Scholar
  13. 13.
    Gabriele, S.; Sclavons, S.; Reiter, G.; Damman, P. Disentanglement time of polymers determines the onset of rim instabilities in dewetting. Phys. Rev. Lett. 2006, 96(15), 156105.CrossRefGoogle Scholar
  14. 14.
    Damman, P.; Gabriele, S.; Coppée, S.; Desprez, S.; Villers, D.; Vilmin, T.; Raphaël, E.; Hamieh, M.; Akhrass, S. A.; Reiter, G. Relaxation of residual stress and reentanglement of polymers in spin-coated films. Phys. Rev. Lett. 2007, 99(3), 036101.CrossRefGoogle Scholar
  15. 15.
    de Silva, J. P.; Geoghegan, M.; Higgins, A. M.; Krausch, G.; David, M. O.; Reiter, G. Switching layer stability in a polymer bilayer by thickness variation. Phys. Rev. Lett. 2007, 98(26), 267802.CrossRefGoogle Scholar
  16. 16.
    Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Gabriele, S.; Vilmin, T.; Raphael, E. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 2005, 4(10), 754–758.CrossRefGoogle Scholar
  17. 17.
    Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 1992, 68(1), 75.CrossRefGoogle Scholar
  18. 18.
    Reiter, G. Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 9(5), 1344–1351.CrossRefGoogle Scholar
  19. 19.
    Redon, C.; Brochard-Wyart, F.; Rondelez, F. Dynamics of dewetting. Phys. Rev. Lett. 1991, 66(6), 715.CrossRefGoogle Scholar
  20. 20.
    Masson, J.; Green, P. F. Hole formation in thin polymer films: a two-stage process. Phys. Rev. Lett. 2002, 88(20), 205504.CrossRefGoogle Scholar
  21. 21.
    Brochard-Wyart, F.; Debrégeas, G.; Fondecave, R.; Martin, P. Dewetting of supported viscoelastic polymer films: birth of rims. Macromolecules 1997, 30(4), 1211–1213.CrossRefGoogle Scholar
  22. 22.
    Jacobs, K. Growth of holes in liquid films with partial slippage. Langmuir 1998, 14(18), 4961–4963.CrossRefGoogle Scholar
  23. 23.
    Reiter, G.; Auroy, P.; Auvray, L. Instabilities of thin polymer films on layers of chemically identical grafted molecules. Macromolecules 1996, 29(6), 2150–2157.CrossRefGoogle Scholar
  24. 24.
    Jiang, N.; Cheung, J.; Guo, Y.; Endoh, M. K.; Koga, T.; Yuan, G.; Satija, S. K. Stability of adsorbed polystyrene nanolayers on silicon substrates. Macromol. Chem. Phys. 2017, 1700326.Google Scholar
  25. 25.
    Jiang, N.; Wang, J.; Di, X.; Cheung, J.; Zeng, W.; Endoh, M. K.; Satija, S. K. Nanoscale adsorbed structures as a robust approach for tailoring polymer film stability. Soft Matter 2016, 12(6), 1801–8109.CrossRefGoogle Scholar
  26. 26.
    Bal, J. K.; Beuvier, T.; Unni, A. B.; Chavez Panduro, E. A.; Vignaud, G.; Delorme, N.; Gibaud, A. Stability of polymer ultrathin films (< 7 nm) made by a top-down approach. ACS Nano 2015, 9(8), 8184–8193.CrossRefGoogle Scholar
  27. 27.
    Xu, L.; Yu, X. F.; Shi, T. F.; An, L. J. Investigation of the dewetting inhibition mechanism of thin polymer films. Soft Matter 2009, 5(10), 2109–2116.CrossRefGoogle Scholar
  28. 28.
    Glynos, E.; Frieberg, B.; Green, P. F. Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 2011, 107(11), 118303.CrossRefGoogle Scholar
  29. 29.
    Glynos, E.; Chremos, A.; Frieberg, B.; Sakellariou, G.; Green, P. F. Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 2014, 47(3), 1137–1143.CrossRefGoogle Scholar
  30. 30.
    Granick, S.; Zhu, Y. X.; Lee, H. Slippery questions about complex fluids flowing past solids. Nat. Mater. 2003, 2(4), 221–227.CrossRefGoogle Scholar
  31. 31.
    Zhu, Y.; Granick, S. Apparent slip of Newtonian fluids past adsorbed polymer layers. Macromolecules 2002, 35(12), 4658–4663.CrossRefGoogle Scholar
  32. 32.
    Lauga, E.; Brenner, M. P. Dynamic mechanisms for apparent slip on hydrophobic surfaces. Phys. Rev. E 2004, 70(2), 026311.CrossRefGoogle Scholar
  33. 33.
    Jenkel, E. Adsorption of high polymers from solution. Z. Elektrochem 1951, 55, 612–618.Google Scholar
  34. 34.
    Tan, H. Y.; Xu, D. H.; Wan, D.; Wang, Y. J.; Wang, L.; Zheng, J.; Liu, F.; Ma, L.; Tang, T. Melt viscosity behavior of C60 containing star polystyrene composites. Soft Matter 2013, 9(27), 6282–6290.CrossRefGoogle Scholar
  35. 35.
    Liu, B.; Wang, H.; Zhang, L.; Yang, G.; Liu, X.; Kim, I. A facile approach for the synthesis of cyclic poly(Nisopropylacrylamide) based on an anthracene-thiol click reaction. Polym. Chem. 2013, 4(8), 2428–2431.CrossRefGoogle Scholar
  36. 36.
    Xu, L.; Sharma, A.; Joo, S. W. Substrate heterogeneity induced instability and slip in polymer thin films: dewetting on silanized surfaces with variable grafting density. Macromolecules 2010, 43(18), 7759–7762.CrossRefGoogle Scholar
  37. 37.
    Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54(12), 5237–5247.CrossRefGoogle Scholar
  38. 38.
    Grest, G. S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 1986, 33(5), 3628.CrossRefGoogle Scholar
  39. 39.
    Sides, S. W.; Grest, G. S.; Stevens, M. J. Large-scale simulation of adhesion dynamics for end-grafted polymers. Macromolecules 2002, 35(2), 566–573.CrossRefGoogle Scholar
  40. 40.
    Ermak, D.; McCammon, J. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69(4), 1352–1360.CrossRefGoogle Scholar
  41. 41.
    Kosmas, M. K. Ideal polymer chains of various architectures at a surface. Macromolecules 1990, 23(7), 2061–2065.CrossRefGoogle Scholar
  42. 42.
    Reiter, G.; Akhrass, S.; Hamieh, M.; Damman, P.; Gabriele, S.; Vilmin, T.; Raphaël, E. Dewetting as an investigative tool for studying properties of thin polymer films. Eur. Phys. J. Spec. Top. 2009, 166(1), 165–172.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.Laboratory of Surface Physics and ChemistryGuizhou Education UniversityGuiyangChina
  4. 4.Department of Polymer Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations