Chinese Journal of Polymer Science

, Volume 36, Issue 7, pp 866–870 | Cite as

Prominently Promoting the Formation of Poly(butylene adipate) α-Form Crystals by Coalescing from Inclusion Complex

  • Hai-Mu Ye
  • Xiao-Tong Chen
  • Ping Liu
  • Na Yan


We successfully use a co-precipitation method to prepare inclusion complex between poly(butylene adipate) (PBA) chains (guest component) and urea molecules (host component). The PBA/urea inclusion complex is confirmed to adopt a hexagonal crystal modification with lattice parameters of a = 8.14 Å and c = 10.92 Å, and the interaction between PBA chains and urea is van der Waals force. The singly isolated PBA chains are suggested to take some gauche conformation, which is different from the all-trans conformation in β-form PBA. Furthermore, we employ the isolated PBA chains which are uniformly pre-established in a specific conformation in urea channels to regulate the crystal form of PBA for the first time. After removing the host urea molecules, the coalesced PBA chains are found to solely crystallize into α-form crystals at different coalescing temperatures. By comparing the FTIR spectra, it is found that PBA chains in inclusion complex plausibly contain some similar conformers as those in α-form crystal, which is suggested to be the intrinsic reason for the sole formation of α-form crystals. This research proves that inclusion complex can be used as a very effective method to regulate polymorphism of semi-crystalline polymers.


Poly(butylene adipate) Inclusion complex Polymorphism Chain conformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21674128) and China University of Petroleum (Beijing).


  1. 1.
    Minke, R.; Blackwell, J. Polymorphic structures of poly(tetramethylene adipate). J. Macromol. Sci., Part B: Phys. 1979, 16(3), 407–417.CrossRefGoogle Scholar
  2. 2.
    Minke, R.; Blackwell, J. Single crystals of poly(tetramethylene adipate). J. Macromol. Sci., Part B: Phys. 1980, 18(2), 233–255.CrossRefGoogle Scholar
  3. 3.
    Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films. Polym. Degrad. Stab. 2005, 87(1), 191–199.CrossRefGoogle Scholar
  4. 4.
    Song, Y. Y.; Ye, H. M.; Xu, J.; Hou, K.; Zhou, Q.; Lu, G. W. Stretch-induced bidirectional polymorphic transformation of crystals in poly(butylene adipate). Polymer 2014, 55(13), 3054–3061.CrossRefGoogle Scholar
  5. 5.
    Pouget, E.; Almontassir, A.; Casas, M. T.; Puiggalí, J. On the crystalline structures of poly(tetramethylene adipate). Macromolecules 2003, 36(3), 698–705.CrossRefGoogle Scholar
  6. 6.
    Iwata, T.; Kobayashi, S.; Tabata, K.; Yonezawa, N.; Doi, Y. Crystal structure, thermal behavior and enzymatic degradation of poly(tetramethylene adipate) solution-grown chain-folded lamellar crystals. Macromol. Biosci. 2004, 4(3), 296–307.CrossRefGoogle Scholar
  7. 7.
    Noguchi, K.; Kondo, H.; Ichikawa, Y.; Okuyama K.; Washiyama, J. Molecular and crystal structure of poly(tetramethylene adipate) a form based on synchrotron X-ray fiber diffraction. Polymer 2005, 46(24), 10823–10830.CrossRefGoogle Scholar
  8. 8.
    Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate). Biomacromolecules 2004, 5(2), 371–378.CrossRefGoogle Scholar
  9. 9.
    Gan, Z.; Abe, H.; Doi, Y. Temperature-induced polymorphic crystals of poly(butylene adipate). Macromol. Chem. Phys. 2002, 203(16), 2369–2374.CrossRefGoogle Scholar
  10. 10.
    Woo, E. M.; Wu, M. C. Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly(butylene adipate). J. Polym. Sci., Part B: Polym. Phys. 2005, 43(13), 1662–1672.CrossRefGoogle Scholar
  11. 11.
    Liang, R.; Chen, Y. C.; Zhang, C. Q.; Yin, J.; Liu, X. L.; Wang, L. K.; Kong, R.; Feng, X.; Yang, J. J. Crystallization behavior of biodegradable poly(ethylene adipate) modulated by a benign nucleating agent: Zinc phenylphosphonate. Chinese J. Polym. Sci. 2017, 35(sn4), 558–568.CrossRefGoogle Scholar
  12. 12.
    Tang, Y. R.; Xu, J.; Guo, B. H. Polymorphic behavior and enzymatic degradation of poly(butylene adipate) in the presence of hexagonal boron nitride nanosheets. Ind. Eng. Chem. Res. 2015, 54(6), 1832–1841.CrossRefGoogle Scholar
  13. 13.
    Yang, J.; Liang, R.; Chen, Y.; Zhang, C.; Zhang, R.; Wang, X.; Kong, R.; Chen, Q. Using a self-assemblable nucleating agent to tailor crystallization behavior, crystal morphology, polymorphic crystalline structure, and biodegradability of poly(1,4-butylene adipate). Ind. Eng. Chem. Res. 2017, 56(28), 7910–7919.CrossRefGoogle Scholar
  14. 14.
    Yang, J.; Pan, P.; Hua, L.; Zhu, B.; Dong, T.; Inoue Y. Polymorphic crystallization and phase transition of poly(butylene adipate) in its miscible crystalline/crystalline blend with poly(vinylidene fluoride). Macromolecules 2010, 43(20), 8610–8618.CrossRefGoogle Scholar
  15. 15.
    Sun, X.; Pi, F.; Zhang, J.; Takahashi, I.; Wang, F.; Yan, S.; Ozaki, Y. Study on the phase transition behavior of poly(butylene adipate) in its blends with poly(vinyl phenol). J. Phys. Chem. B 2011, 115(9), 1950–1957.CrossRefGoogle Scholar
  16. 16.
    Wang, H. J.; Feng, H. P.; Wang, X. C.; Guo, P. Y.; Zhao, T. S.; Ren, L. F.; Qiang, X. H.; Xiang, Y. H.; Yan, C. Effects of crystallization temperature and blend ratio on the crystal structure of poly(butylene adipate) in the poly(butylene adipate)/poly(butylene succinate) blends. Chinese J. Polym. Sci. 2014, 32(4), 488–496.CrossRefGoogle Scholar
  17. 17.
    Liang, Z.; Pan, P.; Zhu, B.; Inoue, Y. Isomorphic crystallization of poly(hexamethylene adipate-co-butylene adipate): regulating crystal modification of polymorphic polyester from internal crystalline lattice. Macromolecules 2010, 43(15), 6429–6437.CrossRefGoogle Scholar
  18. 18.
    Zhao, L.; Gan, Z. Effect of copolymerized butylene terephthalate chains on polymorphism and enzymatic degradation of poly(butylene adipate). Polym. Degrad. Stab. 2006, 91(10), 2429–2436.CrossRefGoogle Scholar
  19. 19.
    Sun, Y.; Li, H.; Huang, Y.; Chen, E.; Zhao, L.; Gan, Z.; Yan, S. Epitaxial crystallization of poly(butylene adipate) on highly oriented polyethylene thin film. Macromolecules 2005, 38(7), 2739–2743.CrossRefGoogle Scholar
  20. 20.
    Ning, Z. B.; Nielsen, R.; Zhao, L. F.; Yu, D. H.; Gan, Z. H. Influence of teflon substrate on crystallization and enzymatic degradation of polymorphic poly(butylene adipate). Chinese J. Polym. Sci. 2014, 32(9), 1243–1252.CrossRefGoogle Scholar
  21. 21.
    Tang, Y. R.; Li, T.; Ye, H. M.; Xu, J.; Guo, B. H. The effect of polymer-substrate interaction on the nucleation property: comparing study of graphene and hexagonal boron nitride nanosheets. Chinese J. Polym. Sci. 2016, 34(8), 1021–1031.CrossRefGoogle Scholar
  22. 22.
    Imai, M.; Kaji, K.; Kanaya, T.; Sakai, Y. Ordering process in the induction period of crystallization of poly(ethylene terephthalate). Phys. Rev. B 1995, 52(17), 12696.CrossRefGoogle Scholar
  23. 23.
    Wang, C. X.; Zhang, X. C.; Song, Y. Y.; Zhou, Q.; Ye, H. M. Regulating the polymorphism behaviour and crystal transformation of poly(butylene adipate) by incorporating butylene fumarate units into the crystal lattice. RSC Adv. 2016, 6(1), 607–616.CrossRefGoogle Scholar
  24. 24.
    Song, Y. Y.; Ye, H. M.; Meng, X. Y.; Zhou, Q.; Lu, G. W. Novel polymorphism behavior of poly(butylene adipate) in its nanocomposites with carbon nanofibers. RSC Adv. 2015, 5(124), 102384–102391.CrossRefGoogle Scholar
  25. 25.
    Ye, H. M.; Song, Y. Y.; Meng, X.; Zhou, Q. Fractionated crystallization, polymorphism and crystal transformation of poly(butylene adipate) confined in electrospun immiscible blend fibers with polystyrene. RSC Adv. 2016, 6(61), 55961–55969.CrossRefGoogle Scholar
  26. 26.
    Lu, J.; Mirau, P. A.; Tonelli, A. E. Chain conformations and dynamics of crystalline polymers as observed in their inclusion compounds by solid-state NMR. Prog. Polym. Sci. 2002, 27(2), 357–401.CrossRefGoogle Scholar
  27. 27.
    Gurarslan, A.; Shen, J.; Tonelli, A. E. Behavior of poly(e-caprolactone)s (PCLs) coalesced from their stoichiometric urea inclusion compounds and their use as nucleants for crystallizing PCL melts: Dependence on PCL molecular weights. Macromolecules 2012, 45(6), 2835–2840.CrossRefGoogle Scholar
  28. 28.
    Zhong, Z.; Yang, X.; Guo, B. H.; Xu, J., Huang, Y. Dissolution behavior of the crystalline inclusion complex formed by the drug diflunisal and poly(e-caprolactone). Cryst. Growth Des. 2016, 17(1), 355–362.CrossRefGoogle Scholar
  29. 29.
    Ye, H. M.; Chen, X. T.; Liu, P.; Wu, S. Y.; Jiang, Z.; Xiong, B.; Xu, J. Preparation of poly(butylene succinate) crystals with exceptionally high melting point and crystallinity from its inclusion complex. Macromolecules 2017, 50(14), 5425–5433.CrossRefGoogle Scholar
  30. 30.
    Ye, H. M.; Song, Y. Y.; Xu, J.; Guo, B. H.; Zhou, Q. Melting behavior of inclusion complex formed between polyethylene glycol oligomer and urea. Polymer 2013, 54(13), 3385–3391.CrossRefGoogle Scholar
  31. 31.
    Chenite, A.; Brisse, F. Structural investigations of ureaaliphatic polyester adducts. Macromolecules 1993, 26(12), 3055–3061.CrossRefGoogle Scholar
  32. 32.
    Smith, A. E. The crystal structure of the urea-hydrocarbon complexes. Acta Crystallogr. 1952, 5(2), 224–235.CrossRefGoogle Scholar
  33. 33.
    Meaurio, E., López-Rodríguez, N.; Sarasua, J. R. Infrared spectrum of poly(L-lactide): application to crystallinity studies. Macromolecules 2006, 39(26), 9291–9301.CrossRefGoogle Scholar
  34. 34.
    Meaurio, E., Zuza, E., López-Rodríguez, N.; Sarasua, J. R. Conformational behavior of poly(L-lactide) studied by infrared spectroscopy. J. Phys. Chem. B 2006, 110(11), 5790–5800.CrossRefGoogle Scholar
  35. 35.
    Ma, W.; Zhang, J.; Wang, X. Formation of poly(vinylidene fluoride) crystalline phases from tetrahydrofuran/N,Ndimethylformamide mixed solvent. J. Mater. Sci. 2008, 43(1), 398–401.CrossRefGoogle Scholar
  36. 36.
    Yan, C.; Zhang, Y.; Hu, Y.; Ozaki, Y.; Shen, D.; Gan, Z.; Yan, S.; Takahashi, I. Melt crystallization and crystal transition of poly(butylene adipate) revealed by infrared spectroscopy. J. Phys. Chem. B 2008, 112(11), 3311–3314.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringChina University of PetroleumBeijingChina

Personalised recommendations