Skip to main content
Log in

A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A novel photonic composite film based on a luminescent dicyanodistyrylbenzene-based liquid crystal polymer network (LCN) was fabricated by using a silica colloidal crystal as a template. The upper part of inverse opal structure and the luminescence characteristics of dicyanodistyrylbenzene-based moiety endowed the resulting bilayer photonic film with structural color arising from coherent Bragg reflection and fluorescence properties, respectively. A fluorescence enhancement phenomenon was observed in the photonic film due to the overlap between the reflection band and emission band of the fluorescent LCN. More importantly, the photo-induced irreversible Z/E photoisomerization of dicyanodistyrylbenzene-based moiety in the photonic film led to both a reflection spectral shift and an observable fluorescence variation. On the basis of this effective phototuning process, microscopic patterning of photonic film was developed under both fluorescence mode and reflection mode. The work demonstrated here provides a new route to construct photo-responsive photonic film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuang, M. X.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystals with superwettability. Chem. Soc. Rev. 45(24), 6833−6854.

  2. Xu, H.; Wu, P.; Zhu, C.; Elbaz, A.; Gu, Z. Z. Photonic crystal for gas sensing. J. Mater. Chem. C 2013, 1(38), 6087–6098.

    Article  CAS  Google Scholar 

  3. Nucara, L.; Greco, F.; Mattoli, V. Electrically responsive photonic crystals: a review. J. Mater. Chem. C 2015, 3(33), 8449–8467.

    Article  CAS  Google Scholar 

  4. Ge, J. P.; Yin, Y. D. Responsive photonic crystals. Angew. Chem. Int. Ed. 2011, 50(7), 1492–522.

    Article  CAS  Google Scholar 

  5. Schaffner, M.; England, G.; Kolle, M.; Aizenberg, J.; Vogel, N. Combining bottom-up self-assembly with top-down microfabrication to create hierarchical inverse opals with high structural order. Small 2015, 11(34), 4334–4340.

    Article  CAS  PubMed  Google Scholar 

  6. Ding, T.; Zhao, Q. B.; Smoukov, S. K.; Baumberg, J. J. Selectively patterning polymer opal films via microimprint lithography. Adv. Optical. Mater. 2014, 2(11), 1098.

    Article  CAS  Google Scholar 

  7. Bao, B.; Li, M. Z.; Li, Jiang, Y. K.; Gu, Z. K.; Zhang, X. Y.; Jiang, L.; Song, Y. L. Quantum dots: patterning fluorescent quantum dot nanocomposites by reactive inkjet printing. Small 2015, 11(14), 1649–1654.

    Article  CAS  PubMed  Google Scholar 

  8. Schäfer, C. G.; Gallei, M.; Zahn, J. T.; Engelhardt, J.; Hellmann, G. P.; Rehahn, M. Reversible light-, thermos-and mechanoresponsive elastomeric polymer opal films. Chem. Mater. 2013, 25(11), 2309–2318.

    Article  CAS  Google Scholar 

  9. Lee, J. S.; Je, K.; Kim, S. H., Designing multicolored photonic micropatterns through the regioselective thermal compression of inverse opals. Adv. Funct. Mater. 2016, 26(25), 4587–4594.

    Article  CAS  Google Scholar 

  10. Liu, J. C.; Wan, L.; Zhang, M. B.; Jiang, K. J.; Song, K.; Wang, J. X.; Ikeda, T.; Jiang, L. Lithography: electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach. Adv. Funct. Mater. 2017, 27(7), DOI: 10.1002/adfm.201605221

    Google Scholar 

  11. Tian, T.; Gao, N.; Gu, C.; Li, J.; Wang, H.; Lan, Y.; Yin, X. P.; Li, G. T. Chemically patterned inverse opal created by a selective photolysis modification process. ACS Appl. Mater. Interfaces 2015, 7(34), 19516–19525.

    Article  CAS  PubMed  Google Scholar 

  12. Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22(31), 3366–3387.

    Article  CAS  PubMed  Google Scholar 

  13. White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14(11), 1087–1098.

    Article  CAS  PubMed  Google Scholar 

  14. de Haan, L. T.; Schenning, A. P. H. J.; Broer, D. J. Programmed morphing of liquid crystal networks. Polymer 2014, 55(23), 5885–5896.

    Article  CAS  Google Scholar 

  15. Wu, G. L.; Jiang, Y.; Xu, D.; Tang, H.; Liang, X.; Li, G. T. Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals. Langmuir 2011, 27(4), 1505–1509.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, Y.; Xu, D.; Li, X. S.; Lin, C. X.; Li, W. N.; An, Q.; Tao, C. A.; Tang, H.; Li, G. T. Electrothermally driven structural colour based on liquid crystal elastomers. J. Mater. Chem. 2012, 22, 11943–11949.

    Article  CAS  Google Scholar 

  17. Wei, W. Y.; Shi, A. S.; Wu, T. H.; Wei, J.; Guo, J. B. Thermo-responsive shape and optical memories of photonic composite films enabled by glassy liquid crystalline polymer networks. Soft Matter 2016, 12(41), 8534–8541.

    Article  CAS  PubMed  Google Scholar 

  18. Xing, H. H.; Li, J. T.; Shi, Y.; Guo, J. B.; Wei, J. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mater. Interfaces 2016, 8(14), 9440–9445.

    Article  CAS  PubMed  Google Scholar 

  19. Xing, H. H.; Li, J. T.; Guo, J. B.; Wei, J. Bio-inspired thermalresponsive inverse opal films with dual structural colors based on liquid crystal elastomer. J. Mater. Chem. C 2015, 3(17), 4424–4430.

    Article  CAS  Google Scholar 

  20. Zhao, J. Q.; Liu, Y. Y.; Yu, Y. L. Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene. J. Mater. Chem. C 2014, 2(48), 10262–10267.

    Article  CAS  Google Scholar 

  21. An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 2002, 124(48), 14410–14415.

    Article  CAS  PubMed  Google Scholar 

  22. Lu, H. B.; Zhang, S. N.; Ding, A. X.; Yuan, M.; Zhang, G. Y.; Xu, W.; Zhang, G. B.; Wang, X. H.; Qiu, L. Z.; Yang, J. X. A luminescent liquid crystal with multistimuli tunable emission colors based on different molecular packing structures. New J. Chem. 2014, 38(8), 3429–3433.

    Article  CAS  Google Scholar 

  23. Gierschner, J.; Park, S. Y. Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology. J. Mater. Chem. C 2013, 1(37), 5818–5832.

    Article  CAS  Google Scholar 

  24. Abadía, M. M.; Varghese, S.; Giménez, R.; Ros, M. B. Multiresponsive luminescent dicyanodistyrylbenzenes and their photochemistry in solution and in bulk. J. Mater. Chem. C 2016, 4(14), 2886–2893.

    Article  Google Scholar 

  25. Wang, H.; Li, F.; Ravia, I.; Gao, B. R.; Li, Y. P.; Medvedev, V.; Sun, H. B.; Tessler, N.; Ma, Y. G. Cyano-substituted oligo(p-phenylene vinylene) single crystals: a promising laser material. Adv. Funct. Mater. 2011, 21(19), 3770–3777.

    Article  CAS  Google Scholar 

  26. Park, S. K.; Varghese, S.; Kim, J. H.; Yoon, S. J.; Kwon, O. K.; An, B. K.; Gierschner, J.; Park, S. Y. Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor–acceptor approach. J. Am. Chem. Soc. 2013, 135(12), 4757–4764.

    Article  CAS  PubMed  Google Scholar 

  27. Aparicio, F.; Cherumukkil, S.; Ajayaghosh, A.; Sanchez, L. Colour-tuneable cyano-substituted divinylene arene luminogens as fluorescent π-gelators. Langmuir 2016, 32(1), 284–289.

    Article  CAS  PubMed  Google Scholar 

  28. Wei, R. B.; He, Y.; Wang, X. G.; Keller, P. Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function. Macromol. Rapid Comm. 2014, 35(18), 1571–1577.

    Article  CAS  Google Scholar 

  29. Li, J. T.; Zhang, Z. W.; Tian, J. J.; Li, G. Q.; Wei, J.; Guo, J. B. Dicyanodistyrylbenzene-based chiral fluorescence photoswitches: an emerging class of multifunctional switches for dual-mode phototunable liquid crystals. Adv. Opt. Mater. 2017, 5(8), DOI: 10.1002/adom.201700014

    Google Scholar 

  30. Kim, H. J.; Whang, D. R.; Gierschner, J.; Lee, C. H.; Park, S. Y. High-contrast red-green-blue tricolor fluorescence switching in bicomponent molecular film. Angew. Chem. Int. Ed. 2015, 54(14), 4330–4333.

    Article  CAS  Google Scholar 

  31. Li, J. J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect. Adv. Mater. 2017, 29(30), DOI: 10.1002/adma.201701905

    Google Scholar 

  32. Broer, D. J.; Boven, J.; Mol, G. N.; Challa, G. In-situ photopolymerization of oriented liquid-crystalline acrylates, 3. Oriented polymer networks from a mesogenic diacrylate. Makromol. Chem. 1989, 190(9), 2255–2268.

    Article  CAS  Google Scholar 

  33. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar. Chem. Rev. 2015, 115(21), 11718–11940.

    Article  CAS  PubMed  Google Scholar 

  34. Su, X.; Sun, X. Q.; Wu, S. L.; Zhang, S. F. Manipulating the emission intensity and lifetime of NaYF4:Yb3+, Er3+ simultaneously by embedding it into CdS photonic crystals. Nanoscale 2017, 9(22), 7666–9673.

    Article  CAS  PubMed  Google Scholar 

  35. Shao, B.; Yang, Z. W.; Li, J.; Yang, J. Z.; Wang, Y. D.; Qiu, J. B.; Song, Z. G. Au nanoparticles embedded inverse opal photonic crystals as substrates for upconversion emission enhancement. J. Am. Ceram. Soc. 2017, 100(3), 988–997.

    Article  CAS  Google Scholar 

  36. Li, H.; Xu, Z. H.; Bao, B.; Sun, N.; Song, Y. L. Improving the luminescence performance of quantum dot-based photonic crystals for white-light emission. J. Mater. Chem. C 2015, 4(1), 39–44.

    Article  CAS  Google Scholar 

  37. Li, J.; Yang, Z.; Shao, B.; Yang, J. Z.; Wang, Y. D.; Qiu, J. B.; Song, Z. G.; French, R. H. Photoluminescence enhancement of SiO2-coated LaPO4:Eu3+ inverse opals by surface plasmon resonance of Ag nanoparticles. J. Am. Ceram. Soc. 2016, 99(10), 3330–3335.

    Article  CAS  Google Scholar 

  38. Wang, Q.; Qiu, J. B.; Song, Z. G.; Yang, Z. W.; Yin, Z. Y.; Zhou, D. C.; Wang, S. Q. Enhancement of Tb-Yb quantum cutting emission by inverse opal photonic crystals. Opt. Mater. 2016, 54, 229–233.

    Article  CAS  Google Scholar 

  39. Huang, H.; Chen, J. B.; Yu, Y.; Shi, Z. M.; Möhwald, H.; Zhang, G. Controlled gradient colloidal photonic crystals and their optical properties. Colloid Surface A 2013, 428(13), 9–17.

    Article  CAS  Google Scholar 

  40. Kunzelman, J.; Kinami, M.; Crenshaw, B. R.; Protasiewicz, J. D. Weder, C. Oligo(p-phenylene vinylene)s as a “New” class of piezochromic fluorophores. Adv. Mater. 2008, 20(1), 119–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science foundation of China (Nos. 51773009, 51573012 and 51373013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Bao Guo.

Electronic supplementary material

10118_2018_2072_MOESM1_ESM.pdf

A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZW., Li, JT., Wei, WY. et al. A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film. Chin J Polym Sci 36, 776–782 (2018). https://doi.org/10.1007/s10118-018-2072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2072-4

Keywords

Navigation