A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film

  • Zhe-Wei Zhang
  • Jun-Tao Li
  • Wan-Yuan Wei
  • Jie Wei
  • Jin-Bao Guo
Article

Abstract

A novel photonic composite film based on a luminescent dicyanodistyrylbenzene-based liquid crystal polymer network (LCN) was fabricated by using a silica colloidal crystal as a template. The upper part of inverse opal structure and the luminescence characteristics of dicyanodistyrylbenzene-based moiety endowed the resulting bilayer photonic film with structural color arising from coherent Bragg reflection and fluorescence properties, respectively. A fluorescence enhancement phenomenon was observed in the photonic film due to the overlap between the reflection band and emission band of the fluorescent LCN. More importantly, the photo-induced irreversible Z/E photoisomerization of dicyanodistyrylbenzene-based moiety in the photonic film led to both a reflection spectral shift and an observable fluorescence variation. On the basis of this effective phototuning process, microscopic patterning of photonic film was developed under both fluorescence mode and reflection mode. The work demonstrated here provides a new route to construct photo-responsive photonic film.

Keywords

Luminescent liquid crystal Polymer networks Photonic composite Photopatterning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science foundation of China (Nos. 51773009, 51573012 and 51373013).

Supplementary material

10118_2018_2072_MOESM1_ESM.pdf (566 kb)
A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film

References

  1. 1.
    Kuang, M. X.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystals with superwettability. Chem. Soc. Rev. 45(24), 6833−6854.Google Scholar
  2. 2.
    Xu, H.; Wu, P.; Zhu, C.; Elbaz, A.; Gu, Z. Z. Photonic crystal for gas sensing. J. Mater. Chem. C 2013, 1(38), 6087–6098.CrossRefGoogle Scholar
  3. 3.
    Nucara, L.; Greco, F.; Mattoli, V. Electrically responsive photonic crystals: a review. J. Mater. Chem. C 2015, 3(33), 8449–8467.CrossRefGoogle Scholar
  4. 4.
    Ge, J. P.; Yin, Y. D. Responsive photonic crystals. Angew. Chem. Int. Ed. 2011, 50(7), 1492–522.CrossRefGoogle Scholar
  5. 5.
    Schaffner, M.; England, G.; Kolle, M.; Aizenberg, J.; Vogel, N. Combining bottom-up self-assembly with top-down microfabrication to create hierarchical inverse opals with high structural order. Small 2015, 11(34), 4334–4340.CrossRefGoogle Scholar
  6. 6.
    Ding, T.; Zhao, Q. B.; Smoukov, S. K.; Baumberg, J. J. Selectively patterning polymer opal films via microimprint lithography. Adv. Optical. Mater. 2014, 2(11), 1098.CrossRefGoogle Scholar
  7. 7.
    Bao, B.; Li, M. Z.; Li, Jiang, Y. K.; Gu, Z. K.; Zhang, X. Y.; Jiang, L.; Song, Y. L. Quantum dots: patterning fluorescent quantum dot nanocomposites by reactive inkjet printing. Small 2015, 11(14), 1649–1654.CrossRefGoogle Scholar
  8. 8.
    Schäfer, C. G.; Gallei, M.; Zahn, J. T.; Engelhardt, J.; Hellmann, G. P.; Rehahn, M. Reversible light-, thermos-and mechanoresponsive elastomeric polymer opal films. Chem. Mater. 2013, 25(11), 2309–2318.CrossRefGoogle Scholar
  9. 9.
    Lee, J. S.; Je, K.; Kim, S. H., Designing multicolored photonic micropatterns through the regioselective thermal compression of inverse opals. Adv. Funct. Mater. 2016, 26(25), 4587–4594.CrossRefGoogle Scholar
  10. 10.
    Liu, J. C.; Wan, L.; Zhang, M. B.; Jiang, K. J.; Song, K.; Wang, J. X.; Ikeda, T.; Jiang, L. Lithography: electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach. Adv. Funct. Mater. 2017, 27(7), DOI: 10.1002/adfm.201605221Google Scholar
  11. 11.
    Tian, T.; Gao, N.; Gu, C.; Li, J.; Wang, H.; Lan, Y.; Yin, X. P.; Li, G. T. Chemically patterned inverse opal created by a selective photolysis modification process. ACS Appl. Mater. Interfaces 2015, 7(34), 19516–19525.CrossRefGoogle Scholar
  12. 12.
    Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22(31), 3366–3387.CrossRefGoogle Scholar
  13. 13.
    White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14(11), 1087–1098.CrossRefGoogle Scholar
  14. 14.
    de Haan, L. T.; Schenning, A. P. H. J.; Broer, D. J. Programmed morphing of liquid crystal networks. Polymer 2014, 55(23), 5885–5896.CrossRefGoogle Scholar
  15. 15.
    Wu, G. L.; Jiang, Y.; Xu, D.; Tang, H.; Liang, X.; Li, G. T. Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals. Langmuir 2011, 27(4), 1505–1509.CrossRefGoogle Scholar
  16. 16.
    Jiang, Y.; Xu, D.; Li, X. S.; Lin, C. X.; Li, W. N.; An, Q.; Tao, C. A.; Tang, H.; Li, G. T. Electrothermally driven structural colour based on liquid crystal elastomers. J. Mater. Chem. 2012, 22, 11943–11949.CrossRefGoogle Scholar
  17. 17.
    Wei, W. Y.; Shi, A. S.; Wu, T. H.; Wei, J.; Guo, J. B. Thermo-responsive shape and optical memories of photonic composite films enabled by glassy liquid crystalline polymer networks. Soft Matter 2016, 12(41), 8534–8541.CrossRefGoogle Scholar
  18. 18.
    Xing, H. H.; Li, J. T.; Shi, Y.; Guo, J. B.; Wei, J. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mater. Interfaces 2016, 8(14), 9440–9445.CrossRefGoogle Scholar
  19. 19.
    Xing, H. H.; Li, J. T.; Guo, J. B.; Wei, J. Bio-inspired thermalresponsive inverse opal films with dual structural colors based on liquid crystal elastomer. J. Mater. Chem. C 2015, 3(17), 4424–4430.CrossRefGoogle Scholar
  20. 20.
    Zhao, J. Q.; Liu, Y. Y.; Yu, Y. L. Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene. J. Mater. Chem. C 2014, 2(48), 10262–10267.CrossRefGoogle Scholar
  21. 21.
    An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 2002, 124(48), 14410–14415.CrossRefGoogle Scholar
  22. 22.
    Lu, H. B.; Zhang, S. N.; Ding, A. X.; Yuan, M.; Zhang, G. Y.; Xu, W.; Zhang, G. B.; Wang, X. H.; Qiu, L. Z.; Yang, J. X. A luminescent liquid crystal with multistimuli tunable emission colors based on different molecular packing structures. New J. Chem. 2014, 38(8), 3429–3433.CrossRefGoogle Scholar
  23. 23.
    Gierschner, J.; Park, S. Y. Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology. J. Mater. Chem. C 2013, 1(37), 5818–5832.CrossRefGoogle Scholar
  24. 24.
    Abadía, M. M.; Varghese, S.; Giménez, R.; Ros, M. B. Multiresponsive luminescent dicyanodistyrylbenzenes and their photochemistry in solution and in bulk. J. Mater. Chem. C 2016, 4(14), 2886–2893.CrossRefGoogle Scholar
  25. 25.
    Wang, H.; Li, F.; Ravia, I.; Gao, B. R.; Li, Y. P.; Medvedev, V.; Sun, H. B.; Tessler, N.; Ma, Y. G. Cyano-substituted oligo(p-phenylene vinylene) single crystals: a promising laser material. Adv. Funct. Mater. 2011, 21(19), 3770–3777.CrossRefGoogle Scholar
  26. 26.
    Park, S. K.; Varghese, S.; Kim, J. H.; Yoon, S. J.; Kwon, O. K.; An, B. K.; Gierschner, J.; Park, S. Y. Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor–acceptor approach. J. Am. Chem. Soc. 2013, 135(12), 4757–4764.CrossRefGoogle Scholar
  27. 27.
    Aparicio, F.; Cherumukkil, S.; Ajayaghosh, A.; Sanchez, L. Colour-tuneable cyano-substituted divinylene arene luminogens as fluorescent π-gelators. Langmuir 2016, 32(1), 284–289.CrossRefGoogle Scholar
  28. 28.
    Wei, R. B.; He, Y.; Wang, X. G.; Keller, P. Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function. Macromol. Rapid Comm. 2014, 35(18), 1571–1577.CrossRefGoogle Scholar
  29. 29.
    Li, J. T.; Zhang, Z. W.; Tian, J. J.; Li, G. Q.; Wei, J.; Guo, J. B. Dicyanodistyrylbenzene-based chiral fluorescence photoswitches: an emerging class of multifunctional switches for dual-mode phototunable liquid crystals. Adv. Opt. Mater. 2017, 5(8), DOI: 10.1002/adom.201700014Google Scholar
  30. 30.
    Kim, H. J.; Whang, D. R.; Gierschner, J.; Lee, C. H.; Park, S. Y. High-contrast red-green-blue tricolor fluorescence switching in bicomponent molecular film. Angew. Chem. Int. Ed. 2015, 54(14), 4330–4333.CrossRefGoogle Scholar
  31. 31.
    Li, J. J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect. Adv. Mater. 2017, 29(30), DOI: 10.1002/adma.201701905Google Scholar
  32. 32.
    Broer, D. J.; Boven, J.; Mol, G. N.; Challa, G. In-situ photopolymerization of oriented liquid-crystalline acrylates, 3. Oriented polymer networks from a mesogenic diacrylate. Makromol. Chem. 1989, 190(9), 2255–2268.CrossRefGoogle Scholar
  33. 33.
    Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar. Chem. Rev. 2015, 115(21), 11718–11940.CrossRefGoogle Scholar
  34. 34.
    Su, X.; Sun, X. Q.; Wu, S. L.; Zhang, S. F. Manipulating the emission intensity and lifetime of NaYF4:Yb3+, Er3+ simultaneously by embedding it into CdS photonic crystals. Nanoscale 2017, 9(22), 7666–9673.CrossRefGoogle Scholar
  35. 35.
    Shao, B.; Yang, Z. W.; Li, J.; Yang, J. Z.; Wang, Y. D.; Qiu, J. B.; Song, Z. G. Au nanoparticles embedded inverse opal photonic crystals as substrates for upconversion emission enhancement. J. Am. Ceram. Soc. 2017, 100(3), 988–997.CrossRefGoogle Scholar
  36. 36.
    Li, H.; Xu, Z. H.; Bao, B.; Sun, N.; Song, Y. L. Improving the luminescence performance of quantum dot-based photonic crystals for white-light emission. J. Mater. Chem. C 2015, 4(1), 39–44.CrossRefGoogle Scholar
  37. 37.
    Li, J.; Yang, Z.; Shao, B.; Yang, J. Z.; Wang, Y. D.; Qiu, J. B.; Song, Z. G.; French, R. H. Photoluminescence enhancement of SiO2-coated LaPO4:Eu3+ inverse opals by surface plasmon resonance of Ag nanoparticles. J. Am. Ceram. Soc. 2016, 99(10), 3330–3335.CrossRefGoogle Scholar
  38. 38.
    Wang, Q.; Qiu, J. B.; Song, Z. G.; Yang, Z. W.; Yin, Z. Y.; Zhou, D. C.; Wang, S. Q. Enhancement of Tb-Yb quantum cutting emission by inverse opal photonic crystals. Opt. Mater. 2016, 54, 229–233.CrossRefGoogle Scholar
  39. 39.
    Huang, H.; Chen, J. B.; Yu, Y.; Shi, Z. M.; Möhwald, H.; Zhang, G. Controlled gradient colloidal photonic crystals and their optical properties. Colloid Surface A 2013, 428(13), 9–17.CrossRefGoogle Scholar
  40. 40.
    Kunzelman, J.; Kinami, M.; Crenshaw, B. R.; Protasiewicz, J. D. Weder, C. Oligo(p-phenylene vinylene)s as a “New” class of piezochromic fluorophores. Adv. Mater. 2008, 20(1), 119–122.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhe-Wei Zhang
    • 1
    • 2
  • Jun-Tao Li
    • 1
    • 2
  • Wan-Yuan Wei
    • 1
    • 2
  • Jie Wei
    • 1
    • 2
  • Jin-Bao Guo
    • 1
    • 2
  1. 1.Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of EducationBeijing University of Chemical TechnologyBeijingChina
  2. 2.Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers and College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations