Skip to main content
Log in

Synergistic Efficiency of Tricresyl Phosphate and Montmorillonite on the Mechanical Characteristics and Flame Retardant Properties of Polylactide and Poly(butylene succinate) Blends

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The main aim of this research was to investigate the synergistic influence of additives and poly(butylene succinate) (PBS) in improving both the mechanical and flame retardant properties of polylactide (PLA) blends. Tricresyl phosphate (TCP) and montmorillonite (MMT) were the additives used to improve the mechanical characteristics and fire resistance of PLA. Differential scanning calorimetry (DSC) thermograms revealed that the addition of TCP and MMT significantly affected their thermal behaviors. The results of the mechanical and morphological characterizations were in agreement with the changes in thermal behavior. The impact strength and limiting oxygen index (LOI) value of PLA significantly increased with the presence of PBS. The failure mode of the blends as evidenced by scanning electron microscopy (SEM) changed from brittle to ductile. The addition of TCP and MMT produced excellent anti-dripping and self-extinguishing behaviors of the blends, achieving V-0 rating. For the PLA/PBS blends, the synergistic combination of PBS and additives led to an acceleration of cold crystallization, a significant increment of flexibility and impact toughness, and an improvement of flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow, W. S.; Teoh, E. L. Flexible and flame resistant poly(lactic acid)/organomontmorillonite nanocomposite. J. Apply. Polym. Sci. 2015, 132(2), 41253–41264.

    Article  Google Scholar 

  2. Wang, X.; Song, L.; Yang, H.; Lu, H.; Hu, Y. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind. Eng. Chem. Res. 2011, 50(9), 5376–5383.

    Article  CAS  Google Scholar 

  3. Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33(8), 820–852.

    Article  CAS  Google Scholar 

  4. Wang, C. F.; Xie, H. Y.; Cheng, Y. P.; Chen, L.; Hu, M. Z.; Chen, S. Chemical synthesis and optical properties of CdS-poly(lactic acid) nanocomposites and their transparent fluorescent films. Colloid. Polym. Sci. 2011, 289(4), 395–400.

    Article  CAS  Google Scholar 

  5. Shi, X.; Zhang, G.; Phuong, T. V.; Lazzeri, A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 2015, 20(1), 1579–1593.

    Article  CAS  Google Scholar 

  6. Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermo-mechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22(3), 398–408.

    Article  CAS  Google Scholar 

  7. Suksut B.; Deeprasertkul, C. Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J. Polym. Environ. 2011, 19(1), 288–296.

    Article  CAS  Google Scholar 

  8. Gavgani, J. N.; Adelnia, H.; Sadeghi, G. M. M.; Zafari, F. Intumescent flame retardant polyurethane/starch composites: thermal, mechanical, and rheological properties. J. Appl. Polym. Sci. 2014, 131(23), 41158–41166.

    Article  Google Scholar 

  9. Cheng, K. C.; Lin, Y. H.; Guo, W.; Hwang, T.; Don, T. M. Flammability and tensile properties of polylactide nanocomposites with short carbon fibers. J. Mater. Sci. 2015, 50(4), 1605–1612.

    Article  CAS  Google Scholar 

  10. Murariu, M.; Bonnaud, L.; Yoann, P.; Fontaine, G.; Bourbigot, S.; Dubois, P. New trends in polylactide (PLA)-based materials: “Green” PLA-calcium sulfate (nano)composites tailored with flame retardant properties. Polym. Degrad. Stab. 2010, 95(3), 374–381.

    Article  CAS  Google Scholar 

  11. Tang, G.; Wang, X.; Xing, W.; Zhang, P.; Wang, B.; Hong, N.; Yang, W.; Hu, Y.; Song, L. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind. Eng. Chem. Res. 2012, 51(37), 12009–12016.

    Article  CAS  Google Scholar 

  12. Tang, G.; Zhang, R.; Wang, X.; Wang, B.; Song, L.; Hu, Y.; Gong, X. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J. Macromol. Sci. 2013, 50(2), 255–269.

    Article  CAS  Google Scholar 

  13. Li, S.; Yuan, H.; Yu, T.; Yuan, W.; Ren, J. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym. Adv. Technol. 2009, 20(12), 1114–1120.

    Article  CAS  Google Scholar 

  14. Bourbigot, S.; Duquesne, S.; Fontaine, G.; Bellayer, S.; Turf, T.; Samyn, F. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol. Cryst. Liq. Cryst. 2008, 486(1), 1367–1381.

    Article  Google Scholar 

  15. Wang, X.; Hu, Y.; Song, L.; Xuan, S.; Xing, W.; Bai, Z.; Lu, H. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind. Eng. Chem. Res. 2011, 50, 713–720..

    Article  CAS  Google Scholar 

  16. Bras, M. L.; Bourbigot, S.; Tallec, Y. L.; Laureyns, J. Synergy in intumescence—application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations. Polym. Degrad. Stab. 1997, 56(1), 11–21.

    Article  Google Scholar 

  17. Zhan, J.; Song, L.; Nie, S.; Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 2009, 94(3), 291–296.

    Article  CAS  Google Scholar 

  18. Wu, K.; Shen, M. M.; Hu, Y.; Xing, W.; Wang, X. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite. J. Therm. Anal. Calorim. 2011, 104(3), 1083–1090.

    Article  CAS  Google Scholar 

  19. Yang, H.; Song, L.; Tai, Q. Wang, X.; Yu, B.; Yuan, Y.; Hu, Y.; Yuen, R. K. K. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab. 2014, 105, 248–256.

    Article  CAS  Google Scholar 

  20. Lai, X.; Zeng, X.; Li, H.; Liao, F.; Zhang, H.; Yin, C. Preparation and properties of flame retardant polypropylene with an intumescent system encapsulated by thermoplastic polyurethane. J. Macromol. Sci. 2012, 51(1), 35–47.

    Article  CAS  Google Scholar 

  21. Bourbigot, S.; Bras, M. L.; Duquesne, S.; Rochery, M. Recent Advances for Intumescent Polymers. Macromol. Mater. Eng. 2004, 289(6), 499–511

    Article  CAS  Google Scholar 

  22. Fox, D. M.; Lee, J.; Ford, E.; Balsley, E.; Zammarano, M.; Matko, S.; Gilman, J. W. POSS modified cellulose for improving flammability characteristics of polystyrene. in ‘10th international conference on wood & biofiber plastic composites. Wisconsin, USA’, 2009, 337–342.

    Google Scholar 

  23. Wang, J.; Dong, X. Y.; Hao, W.L.; Yi, Z.; Xi, G.; Ding, W. Application properties of TCP/OMMT flame retardant system in NR composites. J. Elastom. Plast. 2012, 45(2), 107–119.

    Article  Google Scholar 

  24. Calderon, J. U.; Lennox, B.; Kamai, M. R. Thermally stable phosphonium-montmorillonite organoclays. Appl. Clay. Sci. 2008, 40(1-4), 90–98.

    Article  CAS  Google Scholar 

  25. Famg, S.; Hu, Y.; Song, L.; Wu, J. Preparation and investigation of ethylene-vinyl acetate copolymer/silicone rubber/clay nanocomposites. Polym. Plast. Technol. Eng. 2008, 47(1), 752–761.

    Google Scholar 

  26. Wu, Y.; Huang, H.; Zhao, W.; Zhang, H.; Wang, Y.; Zhang, L. Flame retardance of montmorillonite/rubber composites. J. Appl. Polym. Sci. 2007, 107(5), 3318–3324.

    Article  Google Scholar 

  27. Zhang, X.; Zhang, Y. Reinforcement effect of poly(butylene succinate) (PBS)-graftedcellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr. Polym. 2016, 140, 374–382.

    Article  CAS  Google Scholar 

  28. Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 2016, 133(8), 43044–43053.

    Article  Google Scholar 

  29. Oyama, H. T. Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 2009, 50(3), 747–751.

    Article  CAS  Google Scholar 

  30. Buenaventutada, P.; Calabia, P.; Ninomiya, F.; Yagi, H.; Oishi, A.; Taguchi, K.; Kunioka, M.; Funabashi, K. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers 2013, 5(1), 128–141.

    Article  Google Scholar 

  31. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): molecular weight dependence. Macromolecules 2007, 40(19), 6896–6905.

    Article  Google Scholar 

  32. Tábil, T.; Sajó, I. E.; Szabó1, F.; Luyt, A. S.; Kovács, J. K. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010, 4, 659–668.

    Article  Google Scholar 

  33. Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym. Lett. 2011, 5(10), 849–858.

    Article  CAS  Google Scholar 

  34. Lee, J. H.; Park, T. G.; Park, H. S.; Lee, D. S.; Lee, Y. K.; Yoon, S. C.; Nam, J. D. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials 2003, 24, 2773–2778.

    Article  CAS  Google Scholar 

  35. Ray, S. S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 2002, 35(8), 3104–3110.

    CAS  Google Scholar 

  36. Zhou, J.; Yao, Z.; Zhou, C.; Wei, D.; Li, S. Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite. J. Appl. Polym. Sci. 2014, 131(18), 40773–40781.

    Google Scholar 

  37. Shyang, C. W.; Kuen, L. S. Flexural, morphological and thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposite. Polym. Polym. Compos. 2008, 16(4), 263–270.

    CAS  Google Scholar 

  38. Dasari, A.; Yu, Z. Z.; Cai, G. P.; Mai, Y. W. Recent developments in the fire retardancy of polymericmaterials. Prog. Polym. Sci. 2013, 38(9), 1357–1387.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Prince of Songkla University (No. SCI600593S) and the Faculty of Science Research Fund, Prince of Songkla University (No. 1-2558-02-006). We gratefully thank the Development and Promotion of Science and Technology Talents Project (DPST). Thanks also to Mr. Thomas Coyne for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worasak Phetwarotai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suparanon, T., Surisaeng, J., Phusunti, N. et al. Synergistic Efficiency of Tricresyl Phosphate and Montmorillonite on the Mechanical Characteristics and Flame Retardant Properties of Polylactide and Poly(butylene succinate) Blends. Chin J Polym Sci 36, 620–631 (2018). https://doi.org/10.1007/s10118-018-2043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2043-9

Keywords

Navigation