Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 620–631 | Cite as

Synergistic Efficiency of Tricresyl Phosphate and Montmorillonite on the Mechanical Characteristics and Flame Retardant Properties of Polylactide and Poly(butylene succinate) Blends

  • Tunsuda Suparanon
  • Jiratchaya Surisaeng
  • Neeranuch Phusunti
  • Worasak Phetwarotai
Article
  • 74 Downloads

Abstract

The main aim of this research was to investigate the synergistic influence of additives and poly(butylene succinate) (PBS) in improving both the mechanical and flame retardant properties of polylactide (PLA) blends. Tricresyl phosphate (TCP) and montmorillonite (MMT) were the additives used to improve the mechanical characteristics and fire resistance of PLA. Differential scanning calorimetry (DSC) thermograms revealed that the addition of TCP and MMT significantly affected their thermal behaviors. The results of the mechanical and morphological characterizations were in agreement with the changes in thermal behavior. The impact strength and limiting oxygen index (LOI) value of PLA significantly increased with the presence of PBS. The failure mode of the blends as evidenced by scanning electron microscopy (SEM) changed from brittle to ductile. The addition of TCP and MMT produced excellent anti-dripping and self-extinguishing behaviors of the blends, achieving V-0 rating. For the PLA/PBS blends, the synergistic combination of PBS and additives led to an acceleration of cold crystallization, a significant increment of flexibility and impact toughness, and an improvement of flame retardancy.

Keywords

Polylactide Poly(butylene succinate) Blend Flame retardant Impact toughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by Prince of Songkla University (No. SCI600593S) and the Faculty of Science Research Fund, Prince of Songkla University (No. 1-2558-02-006). We gratefully thank the Development and Promotion of Science and Technology Talents Project (DPST). Thanks also to Mr. Thomas Coyne for assistance with the English.

References

  1. 1.
    Chow, W. S.; Teoh, E. L. Flexible and flame resistant poly(lactic acid)/organomontmorillonite nanocomposite. J. Apply. Polym. Sci. 2015, 132(2), 41253–41264.CrossRefGoogle Scholar
  2. 2.
    Wang, X.; Song, L.; Yang, H.; Lu, H.; Hu, Y. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind. Eng. Chem. Res. 2011, 50(9), 5376–5383.CrossRefGoogle Scholar
  3. 3.
    Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33(8), 820–852.CrossRefGoogle Scholar
  4. 4.
    Wang, C. F.; Xie, H. Y.; Cheng, Y. P.; Chen, L.; Hu, M. Z.; Chen, S. Chemical synthesis and optical properties of CdS-poly(lactic acid) nanocomposites and their transparent fluorescent films. Colloid. Polym. Sci. 2011, 289(4), 395–400.CrossRefGoogle Scholar
  5. 5.
    Shi, X.; Zhang, G.; Phuong, T. V.; Lazzeri, A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 2015, 20(1), 1579–1593.CrossRefGoogle Scholar
  6. 6.
    Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermo-mechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22(3), 398–408.CrossRefGoogle Scholar
  7. 7.
    Suksut B.; Deeprasertkul, C. Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J. Polym. Environ. 2011, 19(1), 288–296.CrossRefGoogle Scholar
  8. 8.
    Gavgani, J. N.; Adelnia, H.; Sadeghi, G. M. M.; Zafari, F. Intumescent flame retardant polyurethane/starch composites: thermal, mechanical, and rheological properties. J. Appl. Polym. Sci. 2014, 131(23), 41158–41166.CrossRefGoogle Scholar
  9. 9.
    Cheng, K. C.; Lin, Y. H.; Guo, W.; Hwang, T.; Don, T. M. Flammability and tensile properties of polylactide nanocomposites with short carbon fibers. J. Mater. Sci. 2015, 50(4), 1605–1612.CrossRefGoogle Scholar
  10. 10.
    Murariu, M.; Bonnaud, L.; Yoann, P.; Fontaine, G.; Bourbigot, S.; Dubois, P. New trends in polylactide (PLA)-based materials: “Green” PLA-calcium sulfate (nano)composites tailored with flame retardant properties. Polym. Degrad. Stab. 2010, 95(3), 374–381.CrossRefGoogle Scholar
  11. 11.
    Tang, G.; Wang, X.; Xing, W.; Zhang, P.; Wang, B.; Hong, N.; Yang, W.; Hu, Y.; Song, L. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind. Eng. Chem. Res. 2012, 51(37), 12009–12016.CrossRefGoogle Scholar
  12. 12.
    Tang, G.; Zhang, R.; Wang, X.; Wang, B.; Song, L.; Hu, Y.; Gong, X. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J. Macromol. Sci. 2013, 50(2), 255–269.CrossRefGoogle Scholar
  13. 13.
    Li, S.; Yuan, H.; Yu, T.; Yuan, W.; Ren, J. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym. Adv. Technol. 2009, 20(12), 1114–1120.CrossRefGoogle Scholar
  14. 14.
    Bourbigot, S.; Duquesne, S.; Fontaine, G.; Bellayer, S.; Turf, T.; Samyn, F. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol. Cryst. Liq. Cryst. 2008, 486(1), 1367–1381.CrossRefGoogle Scholar
  15. 15.
    Wang, X.; Hu, Y.; Song, L.; Xuan, S.; Xing, W.; Bai, Z.; Lu, H. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind. Eng. Chem. Res. 2011, 50, 713–720..CrossRefGoogle Scholar
  16. 16.
    Bras, M. L.; Bourbigot, S.; Tallec, Y. L.; Laureyns, J. Synergy in intumescence—application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations. Polym. Degrad. Stab. 1997, 56(1), 11–21.CrossRefGoogle Scholar
  17. 17.
    Zhan, J.; Song, L.; Nie, S.; Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 2009, 94(3), 291–296.CrossRefGoogle Scholar
  18. 18.
    Wu, K.; Shen, M. M.; Hu, Y.; Xing, W.; Wang, X. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite. J. Therm. Anal. Calorim. 2011, 104(3), 1083–1090.CrossRefGoogle Scholar
  19. 19.
    Yang, H.; Song, L.; Tai, Q. Wang, X.; Yu, B.; Yuan, Y.; Hu, Y.; Yuen, R. K. K. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab. 2014, 105, 248–256.CrossRefGoogle Scholar
  20. 20.
    Lai, X.; Zeng, X.; Li, H.; Liao, F.; Zhang, H.; Yin, C. Preparation and properties of flame retardant polypropylene with an intumescent system encapsulated by thermoplastic polyurethane. J. Macromol. Sci. 2012, 51(1), 35–47.CrossRefGoogle Scholar
  21. 21.
    Bourbigot, S.; Bras, M. L.; Duquesne, S.; Rochery, M. Recent Advances for Intumescent Polymers. Macromol. Mater. Eng. 2004, 289(6), 499–511CrossRefGoogle Scholar
  22. 22.
    Fox, D. M.; Lee, J.; Ford, E.; Balsley, E.; Zammarano, M.; Matko, S.; Gilman, J. W. POSS modified cellulose for improving flammability characteristics of polystyrene. in ‘10th international conference on wood & biofiber plastic composites. Wisconsin, USA’, 2009, 337–342.Google Scholar
  23. 23.
    Wang, J.; Dong, X. Y.; Hao, W.L.; Yi, Z.; Xi, G.; Ding, W. Application properties of TCP/OMMT flame retardant system in NR composites. J. Elastom. Plast. 2012, 45(2), 107–119.CrossRefGoogle Scholar
  24. 24.
    Calderon, J. U.; Lennox, B.; Kamai, M. R. Thermally stable phosphonium-montmorillonite organoclays. Appl. Clay. Sci. 2008, 40(1-4), 90–98.CrossRefGoogle Scholar
  25. 25.
    Famg, S.; Hu, Y.; Song, L.; Wu, J. Preparation and investigation of ethylene-vinyl acetate copolymer/silicone rubber/clay nanocomposites. Polym. Plast. Technol. Eng. 2008, 47(1), 752–761.Google Scholar
  26. 26.
    Wu, Y.; Huang, H.; Zhao, W.; Zhang, H.; Wang, Y.; Zhang, L. Flame retardance of montmorillonite/rubber composites. J. Appl. Polym. Sci. 2007, 107(5), 3318–3324.CrossRefGoogle Scholar
  27. 27.
    Zhang, X.; Zhang, Y. Reinforcement effect of poly(butylene succinate) (PBS)-graftedcellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr. Polym. 2016, 140, 374–382.CrossRefGoogle Scholar
  28. 28.
    Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 2016, 133(8), 43044–43053.CrossRefGoogle Scholar
  29. 29.
    Oyama, H. T. Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 2009, 50(3), 747–751.CrossRefGoogle Scholar
  30. 30.
    Buenaventutada, P.; Calabia, P.; Ninomiya, F.; Yagi, H.; Oishi, A.; Taguchi, K.; Kunioka, M.; Funabashi, K. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers 2013, 5(1), 128–141.CrossRefGoogle Scholar
  31. 31.
    Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): molecular weight dependence. Macromolecules 2007, 40(19), 6896–6905.CrossRefGoogle Scholar
  32. 32.
    Tábil, T.; Sajó, I. E.; Szabó1, F.; Luyt, A. S.; Kovács, J. K. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010, 4, 659–668.CrossRefGoogle Scholar
  33. 33.
    Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym. Lett. 2011, 5(10), 849–858.CrossRefGoogle Scholar
  34. 34.
    Lee, J. H.; Park, T. G.; Park, H. S.; Lee, D. S.; Lee, Y. K.; Yoon, S. C.; Nam, J. D. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials 2003, 24, 2773–2778.CrossRefGoogle Scholar
  35. 35.
    Ray, S. S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 2002, 35(8), 3104–3110.Google Scholar
  36. 36.
    Zhou, J.; Yao, Z.; Zhou, C.; Wei, D.; Li, S. Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite. J. Appl. Polym. Sci. 2014, 131(18), 40773–40781.Google Scholar
  37. 37.
    Shyang, C. W.; Kuen, L. S. Flexural, morphological and thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposite. Polym. Polym. Compos. 2008, 16(4), 263–270.Google Scholar
  38. 38.
    Dasari, A.; Yu, Z. Z.; Cai, G. P.; Mai, Y. W. Recent developments in the fire retardancy of polymericmaterials. Prog. Polym. Sci. 2013, 38(9), 1357–1387.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tunsuda Suparanon
    • 1
  • Jiratchaya Surisaeng
    • 1
  • Neeranuch Phusunti
    • 2
  • Worasak Phetwarotai
    • 1
    • 3
  1. 1.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHatyaiThailand
  2. 2.Department of Chemistry, Faculty of SciencePrince of Songkla UniversityHatyaiThailand
  3. 3.Bioplastic Research Unit, Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversitySongkhlaThailand

Personalised recommendations