Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 612–619 | Cite as

Fabrication of Cu(OH)2 Nanowires Blended Poly(vinylidene fluoride) Ultrafiltration Membranes for Oil-Water Separation

  • Ye Wang
  • Ting-Ting Hu
  • Xiao-Long Han
  • Yu-Qi Wang
  • Ji-Ding Li


Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride) (PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration (UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements. The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires. In addition, water flux and bovine serum albumin (BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.


Cu(OH)2 nanowires PVDF UF membrane Oil-Water emulsion separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Postdoctoral Science Foundation of China (No. 2014M560802), the Natural Science Foundation of Education Department of Shaanxi Provincial Government (No. 16JK1755) and the State Key Laboratory of Chemical Engineering (No. SKL-ChE-16A04).


  1. 1.
    Low, B. T.; Zhao, L.; Merkel, T. C.; Weber, M.; Stolten, D. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J. Membr. Sci. 2013, 431(6), 139–155.CrossRefGoogle Scholar
  2. 2.
    Liu, S. L.; Shao, L.; Chua, M. L.; Lau, C. H.; Wang, H.; Quan, S. Recent progress in the design of advanced PEO-containing membranes for CO2 removal. Prog. Polym. Sci. 2013, 38(7), 1089–1120.CrossRefGoogle Scholar
  3. 3.
    Chang, X. J.; Wang, Z. X.; Quan, S.; Xu, Y. C.; Jiang, Z. X.; Shao, L. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl. Surf. Sci. 2014, 316(1), 537–548.CrossRefGoogle Scholar
  4. 4.
    Le-Clech, P.; Chen, V.; Fane, T. A. G. Fouling in membrane bioreactors used in waste water treatment. J. Membr. Sci. 2006, 284(1), 17–53.CrossRefGoogle Scholar
  5. 5.
    Wang, Z. H.; Yu, H. R.; Xia, J. F.; Zhang, F. F.; Li, F.; Xia, Y. Z.; Li, Y. H. Novel GO-blended PVDF ultrafiltration membranes. Desalination 2012, 299(8), 50–54.CrossRefGoogle Scholar
  6. 6.
    Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452(7185), 301.CrossRefGoogle Scholar
  7. 7.
    Nurul, H. I.; Mohammad, A. W.; Markom, M.; Peng, L. C. Effects of palm oil-based fatty acids on fouling of ultrafiltration membranes during the clarification of glycerin-rich solution. J Food. Eng. 2010, 101(3), 264–272.CrossRefGoogle Scholar
  8. 8.
    Hashim, N. A.; Liu, F.; Li, K. A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. J. Membr. Sci. 2009, 345(1-2), 134–141.CrossRefGoogle Scholar
  9. 9.
    Wei, Y.; Chu, H. Q.; Dong, B. Z.; Li, X.; Xia, S. J.; Qiang, Z. M. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination 2011, 272(1), 90–97.CrossRefGoogle Scholar
  10. 10.
    Zuo, X. T.; Yu, S. L.; Xu, X.; Xu, J.; Bao, R. L.; Yan, X. J. New PVDF organic-inorganic membranes: the effect of SiO2 nanoparticles content on the transport performance of anion-exchange membranes. J. Membr. Sci. 2009, 340(1-2), 206–213.CrossRefGoogle Scholar
  11. 11.
    Liang, S.; Xiao, K.; Mo, Y. H.; Huang, X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Membr. Sci. 2012, 394-395, 184–192.CrossRefGoogle Scholar
  12. 12.
    Wang, D. X.; Tong, F.; Aerts, P. Application of the combined ultrafiltration and reverse osmosis for refinery wastewater reuse in Sinopec Yanshan Plant. Desalin. Water Treat 2011, 25(1-3), 133–142.CrossRefGoogle Scholar
  13. 13.
    Yan, L.; Li, Y. S.; Xiang, C. B. Preparation of poly(vinylidene fluoride) (PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005, 46(18), 7701–7706.CrossRefGoogle Scholar
  14. 14.
    Wu, G. P.; Gan, S. Y.; Cui, L. Z.; Xu, Y. Y. Preparation and characterization of PES/TiO2 composite membranes. Appl. Surf. Sci. 2008, 254(21), 7080–7086.CrossRefGoogle Scholar
  15. 15.
    Huang, X.; Wang, W. P.; Liu, Y. D.; Wang, H.; Zhang, Z. B.; Fan, W. L.; Li, L. Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes. Chem. Eng. J. 2015, 273, 421–429.CrossRefGoogle Scholar
  16. 16.
    Yang, Y. N.; Wang, P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process. Polymer 2006, 47(8), 2683–2688.CrossRefGoogle Scholar
  17. 17.
    Xu, Z. W.; Wu, T. F.; Shi, J.; Wang, W.; Teng, K. Y.; Qian, X. M.; Shan, M. J.; Deng, H.; Tian, X.; Li, C. Y.; Li, F. Y. Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes. ACS Appl. Mater. Interfaces 2016, 8(28), 18418–18429.CrossRefGoogle Scholar
  18. 18.
    Zhang, J. G.; Xu, Z. W.; Mai, W.; Min, C. Y.; Zhou, B. M.; Shan, M. J.; Li, Y. L.; Yang, C. Y.; Wang, Z.; Qian, X. M. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J. Mater. Chem. A 2013, 1(9), 3101–3111.CrossRefGoogle Scholar
  19. 19.
    Zhang, J. G.; Xu, Z. W.; Shan, M. J.; Zhou, B. M.; Li, Y. L.; Li, B. D.; Niu, J. R.; Qian, X. M. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci. 2013, 448(24), 81–92.CrossRefGoogle Scholar
  20. 20.
    Xu, Z. W.; Wu, T. F.; Shi, J.; Teng, K. Y.; Wang, W.; Ma, M. J.; Li, J.; Qian, X. M.; Li, C. Y.; Fan, J. T. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J. Membr. Sci. 2016, 520, 281–293.CrossRefGoogle Scholar
  21. 21.
    Long, Y.; Hui, J. F.; Wang, P. P.; Xiang, G. L.; Xu, B.; Hu, S.; Zhu, W. C.; Lü, X. Q.; Zhuang, J.; Wang, X. Hydrogen bond nanoscale networks showing switchable transport performance. Sci. Rep. 2012, 2(8), DOI: 10.1038/srep00612.Google Scholar
  22. 22.
    Zhang, F.; Zhang, W. B.; Shi, Z.; Wang, D.; Jin, J.; Jiang, L. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv. Mater. 2013, 25(30), 4192–4198.CrossRefGoogle Scholar
  23. 23.
    Bottino, A.; Camera-Roda, G.; Capannelli, G.; Munari, S. The formation of microporous polyvinylidene difluoride membranes by phase separation. J. Membr. Sci. 1991, 57(1), 1–20.CrossRefGoogle Scholar
  24. 24.
    Wang, W. Z.; Lan, C.; Li, Y. Z.; Hong, K. Q.; Wang, G. H. A simple wet chemical route for large-scale synthesis of Cu(OH)2 nanowires. Chem. Phys. Lett. 2002, 366(3), 220–223.CrossRefGoogle Scholar
  25. 25.
    Safarpour, M.; Khataee, A.; Vatanpour, V. Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Sep. Purif. Technol. 2015, 140, 32–42.CrossRefGoogle Scholar
  26. 26.
    Pagliero, C.; Mattea, M.; Ochoa, N.; Marchese, J. Fouling of polymeric membranes during degumming of crude sunflower and soybean oil. J. Food. Eng. 2007, 78(1), 194–197.CrossRefGoogle Scholar
  27. 27.
    Koltuniewicz, A. B.; Field, R. W. Process factors during removal of oil-in-water emulsions with cross-flow microfiltration. Desalination 1996, 105(105), 79–89.CrossRefGoogle Scholar
  28. 28.
    Yi, X. S.; Yu, S. L.; Shi, W. X.; Sun, N.; Jin, L. M.; Wang, S.; Zhang, B.; Ma, C.; Sun, L. P. The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3. Desalination 2011, 281(1), 179–184.CrossRefGoogle Scholar
  29. 29.
    Li, C. F.; Yin, Y. D.; Hou, H. G.; Fan, N. Y.; Yuan, F. L.; Shi, Y. M.; Meng, Q. L. Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation. Solid State Commun. 2010, 150(13), 585–589.CrossRefGoogle Scholar
  30. 30.
    Al-Hazmi, F.; Alnowaiser, F.; Al-Ghamdi, A. A.; Aly, M. M.; Al-Tuwirqi, R. M.; El-Tantawy, F. A new large-scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattice Microst. 2012, 52(2), 200–209.CrossRefGoogle Scholar
  31. 31.
    He, J.; Zhao, X. N.; Zhu, J. J.; Wang, J. Preparation of CdS nanowires by the decomposition of the complex in the presence of microwave irradiation. J. Cryst. Growth 2002, 240(3), 389–394.CrossRefGoogle Scholar
  32. 32.
    Benjamin, J.; Wylie-van, E.; Aidan, G. Y.; Najeh, I. A.; Tim, K.; Nick, M. S. Ligand-functionalised copper(II) hydroxide for quantum dot photoluminescence quenching. J. Colloid Interfaces Sci. 2010, 346(2), 288.CrossRefGoogle Scholar
  33. 33.
    Liu, N.; Wu, D.; Wu, H. X.; Luo, F.; Chen, J. Controllable synthesis of metal hydroxide and oxide nanostructures by ionic liquids assisted electrochemical corrosion method. Solid State Sci. 2008, 10(8), 1049–1055.CrossRefGoogle Scholar
  34. 34.
    Sun, Y. Z.; Ma, L.; Zhou, B. B.; Gao, P. Cu(OH)2 and CuO nanotube networks from hexaoxacyclooctadecane-like posnjakite microplates: Synthesis and electrochemical hydrogen storage. Int. J. Hydrogen Energ. 2012, 37(3), 2336–2343.CrossRefGoogle Scholar
  35. 35.
    Lee, S.; Park, S.; Jeong, H.; Kim, C. W.; Lee, D. J.; Jin, C. Effects of post-annealing treatment on the microstructural evolution and quality of Cu(OH)2 nanowires. J. Alloy Compd. 2015, 652(4), 153–157.CrossRefGoogle Scholar
  36. 36.
    Yu, L. Y.; Xu, Z. L.; Shen, H. M.; Yang, H. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J. Membr. Sci. 2009, 337(1), 257–265.CrossRefGoogle Scholar
  37. 37.
    Vatanpour, V.; Yekavalangi, M. E.; Safarpour, M. Preparation and characterization of nanocomposite PVDF ultrafiltration membrane embedded with nanoporous SAPO-34 to improve permeability and antifouling performance. Sep. Purif. Technol. 2016, 163, 300–309.CrossRefGoogle Scholar
  38. 38.
    Yan, L.; Li, Y. S.; Xiang, C. B.; Xianda, S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J. Membr. Sci. 2006, 276(1), 162–167.CrossRefGoogle Scholar
  39. 39.
    Zhao, S.; Yan, W. T.; Shi, M. Q.; Wang, Z.; Wang, J. X.; Wang, S. C. Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 2015, 478, 105–116.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ye Wang
    • 1
  • Ting-Ting Hu
    • 1
  • Xiao-Long Han
    • 1
    • 2
  • Yu-Qi Wang
    • 1
  • Ji-Ding Li
    • 2
  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anChina
  2. 2.The State Key Laboratory of Chemical Engineering, Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations