Skip to main content
Log in

Enhanced αγ′ Transition of Poly(vinylidene fluoride) by Step Crystallization and Subsequent Annealing

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF) exhibits pronounced polymorphs. Its γ phase is attractive due to the electroactive properties. The γ-PVDF is however difficult to obtain under normal crystallization condition. In a previous work, we reported a simple melt-recrystallization approach for producing γ-phase rich PVDF thin films through selective melting and subsequent recrystallization. We reported here another approach for promoting the αγ′ phase transition to prepare γ-phase rich PVDF thin films. To this end, a stepwise crystallization and subsequent annealing process was used. The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition. It was found that crystallizing the PVDF melt first at 152 °C for 4 h, then quenching to room temperature and finally annealing the sample at 160 °C for 100 h was the most efficient to produce γ-PVDF rich films. This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 °C, which favors the formation of γ-PVDF crystals for triggering the αγ′ phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ling, Q. D.; Liaw, D. J.; Zhu, C.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 2008, 33(10), 917–978.

    Article  CAS  Google Scholar 

  2. Doll, W. W.; Lando, J. B. The polymorphism of poly(vinylidene fluoride) IV. The structure of high-pressure-crystallized poly(vinylidene fluoride). J. Macromol. Sci. B 1970, 4(4), 889–896.

    Article  CAS  Google Scholar 

  3. Lovinger, A. J., in “Developments in Crystalline Polymers, Vol. 1”, ed. by Bassett, D. C. Springer, Netherlands, 1982, p. 195

    Book  Google Scholar 

  4. Lovinger, A. J. Ferroelectric polymers. Science 1983, 220(4602), 1115–1121.

    Article  CAS  Google Scholar 

  5. Chen, Z.; Kwon, K. Y.; Tan, X. Integrated IPMC/PVDF sensory actuator and its validation in feedback control. Sensor Actuat. A-Phys. 2008, 144(2), 231–241.

    Article  CAS  Google Scholar 

  6. Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313(5785), 334–336.

    Article  CAS  Google Scholar 

  7. Lovinger, A. J. Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules 1982, 15(1), 40–44.

    Article  CAS  Google Scholar 

  8. Li, M.; Wondergem, H. J.; Spijkamn, M. J.; Asadi, K.; Katsouras, I.; Blom, P. W. M. Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater. 2013, 12(5), 433–438.

    Article  CAS  Google Scholar 

  9. Kang, S. J.; Park, Y. J.; Bae, I.; Kim, K. J.; Kim, H. C.; Bauer, S.; Thomas, E. L.; Park, C. Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv. Funct. Mater. 2009, 19(17), 2812–2818.

    Article  CAS  Google Scholar 

  10. Kang, S. J.; Park, Y. J.; Hwang, J. Y.; Jeong, H. J.; Lee, J. S.; Kim, K. J.; Kim, H. C.; Huh, J.; Park, C. Localized pressure-induced ferroelectric pattern arrays of semicrystalline poly(vinylidene fluoride) by microimprinting. Adv. Mater. 2007, 19(4), 581–586.

    Article  CAS  Google Scholar 

  11. Kang, S. J.; Bae, I.; Choi, J. H.; Park, Y. J.; Jo, P. S.; Kim, Y.; Kim, K. J.; Myoung, J. M.; Kim, E.; Park, C. Fabrication of micropatterned ferroelectric gamma poly(vinylidene fluoride) film for non-volatile polymer memory. J. Mater. Chem. 2011, 21(11), 3619–3624.

    Article  CAS  Google Scholar 

  12. Lovinger, A. J. Crystalline transformations in spherulites of poly(vinylidene fluoride). Polymer 1980, 21(11), 1317–1322.

    Article  CAS  Google Scholar 

  13. Lovinger, A. J. Crystallization and morphology of melt-solidified poly(vinylidene fluoride). J. Polym. Sci. Polym. Phys. Ed. 1980, 18(4), 793–809.

    Article  CAS  Google Scholar 

  14. Tashiro, K.; Kobayahsi, M. Structural phase transition in ferroelectric fluorine polymers: X-ray diffraction and infrared/Raman spectroscopic study. Phase Transit. 1989, 18(3-4), 213–246.

    Article  CAS  Google Scholar 

  15. Gregorio, R.; CapitãO, R. C. Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J. Mater. Sci. 2000, 35(2), 299–306.

    Article  CAS  Google Scholar 

  16. Lovinger, A. J. Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J. Appl. Phys. 1981, 52(10), 5934–5938.

    Article  CAS  Google Scholar 

  17. Takahashi, Y.; Matsubara, Y.; Tadokoro, H. Mechanisms for crystal phase transformations by heat treatment and molecular motion in poly(vinylidene fluoride). Macromolecules 1982, 15(2), 334–338.

    Article  CAS  Google Scholar 

  18. Zheng, Y.; Zhang, J.; Sun, X.; Li, H.; Ren, Z.; Yan, S. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization. Ind. Eng. Chem. Res. 2017, 56(15), 4580–4587.

    Article  CAS  Google Scholar 

  19. Meraga, C.; Marigo, A. Influence of annealing and chain defects on the melting behavior of poly(vinylidene fluoride). Eur. Polym. J. 2003, 39(8), 1713–1720.

    Article  Google Scholar 

  20. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39(4), 683–706.

    Article  CAS  Google Scholar 

  21. Tashiro, K.; Kobayashi, M.; Tadokoro, H. Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III. Macromolecules 1981, 14(6), 1757–1764.

    Article  CAS  Google Scholar 

  22. Wang, Y. T.; Liu, P. R.; Lu, Y.; Men, Y. F. Mechanism of polymorph selection during crystallization of random butene-1/ethylene copolymer. Chinese J. Polym. Sci. 2016, 34(8), 1014–1020.

    Article  CAS  Google Scholar 

  23. Hu, D. D.; Ye, S. B.; Yu, F.; Feng, J. C. Further understanding on the three domains of isotactic polypropylene by investigating the crystalline morphologies evolution after treatment at different domains. Chinese J. Polym. Sci. 2016, 34(3), 344–358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Ke Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YR., Zhang, J., Sun, XL. et al. Enhanced αγ′ Transition of Poly(vinylidene fluoride) by Step Crystallization and Subsequent Annealing. Chin J Polym Sci 36, 598–603 (2018). https://doi.org/10.1007/s10118-018-2040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2040-z

Keywords

Navigation