Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 598–603 | Cite as

Enhanced αγ′ Transition of Poly(vinylidene fluoride) by Step Crystallization and Subsequent Annealing

  • Yi-Ran Zheng
  • Jie Zhang
  • Xiao-Li Sun
  • Hui-Hui Li
  • Zhong-Jie Ren
  • Shou-Ke Yan


Poly(vinylidene fluoride) (PVDF) exhibits pronounced polymorphs. Its γ phase is attractive due to the electroactive properties. The γ-PVDF is however difficult to obtain under normal crystallization condition. In a previous work, we reported a simple melt-recrystallization approach for producing γ-phase rich PVDF thin films through selective melting and subsequent recrystallization. We reported here another approach for promoting the αγ′ phase transition to prepare γ-phase rich PVDF thin films. To this end, a stepwise crystallization and subsequent annealing process was used. The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition. It was found that crystallizing the PVDF melt first at 152 °C for 4 h, then quenching to room temperature and finally annealing the sample at 160 °C for 100 h was the most efficient to produce γ-PVDF rich films. This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 °C, which favors the formation of γ-PVDF crystals for triggering the αγ′ phase transition.


Poly(vinylidene fluoride) Step crystallization Annealing Phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ling, Q. D.; Liaw, D. J.; Zhu, C.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 2008, 33(10), 917–978.CrossRefGoogle Scholar
  2. 2.
    Doll, W. W.; Lando, J. B. The polymorphism of poly(vinylidene fluoride) IV. The structure of high-pressure-crystallized poly(vinylidene fluoride). J. Macromol. Sci. B 1970, 4(4), 889–896.CrossRefGoogle Scholar
  3. 3.
    Lovinger, A. J., in “Developments in Crystalline Polymers, Vol. 1”, ed. by Bassett, D. C. Springer, Netherlands, 1982, p. 195CrossRefGoogle Scholar
  4. 4.
    Lovinger, A. J. Ferroelectric polymers. Science 1983, 220(4602), 1115–1121.CrossRefGoogle Scholar
  5. 5.
    Chen, Z.; Kwon, K. Y.; Tan, X. Integrated IPMC/PVDF sensory actuator and its validation in feedback control. Sensor Actuat. A-Phys. 2008, 144(2), 231–241.CrossRefGoogle Scholar
  6. 6.
    Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313(5785), 334–336.CrossRefGoogle Scholar
  7. 7.
    Lovinger, A. J. Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules 1982, 15(1), 40–44.CrossRefGoogle Scholar
  8. 8.
    Li, M.; Wondergem, H. J.; Spijkamn, M. J.; Asadi, K.; Katsouras, I.; Blom, P. W. M. Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater. 2013, 12(5), 433–438.CrossRefGoogle Scholar
  9. 9.
    Kang, S. J.; Park, Y. J.; Bae, I.; Kim, K. J.; Kim, H. C.; Bauer, S.; Thomas, E. L.; Park, C. Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv. Funct. Mater. 2009, 19(17), 2812–2818.CrossRefGoogle Scholar
  10. 10.
    Kang, S. J.; Park, Y. J.; Hwang, J. Y.; Jeong, H. J.; Lee, J. S.; Kim, K. J.; Kim, H. C.; Huh, J.; Park, C. Localized pressure-induced ferroelectric pattern arrays of semicrystalline poly(vinylidene fluoride) by microimprinting. Adv. Mater. 2007, 19(4), 581–586.CrossRefGoogle Scholar
  11. 11.
    Kang, S. J.; Bae, I.; Choi, J. H.; Park, Y. J.; Jo, P. S.; Kim, Y.; Kim, K. J.; Myoung, J. M.; Kim, E.; Park, C. Fabrication of micropatterned ferroelectric gamma poly(vinylidene fluoride) film for non-volatile polymer memory. J. Mater. Chem. 2011, 21(11), 3619–3624.CrossRefGoogle Scholar
  12. 12.
    Lovinger, A. J. Crystalline transformations in spherulites of poly(vinylidene fluoride). Polymer 1980, 21(11), 1317–1322.CrossRefGoogle Scholar
  13. 13.
    Lovinger, A. J. Crystallization and morphology of melt-solidified poly(vinylidene fluoride). J. Polym. Sci. Polym. Phys. Ed. 1980, 18(4), 793–809.CrossRefGoogle Scholar
  14. 14.
    Tashiro, K.; Kobayahsi, M. Structural phase transition in ferroelectric fluorine polymers: X-ray diffraction and infrared/Raman spectroscopic study. Phase Transit. 1989, 18(3-4), 213–246.CrossRefGoogle Scholar
  15. 15.
    Gregorio, R.; CapitãO, R. C. Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J. Mater. Sci. 2000, 35(2), 299–306.CrossRefGoogle Scholar
  16. 16.
    Lovinger, A. J. Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J. Appl. Phys. 1981, 52(10), 5934–5938.CrossRefGoogle Scholar
  17. 17.
    Takahashi, Y.; Matsubara, Y.; Tadokoro, H. Mechanisms for crystal phase transformations by heat treatment and molecular motion in poly(vinylidene fluoride). Macromolecules 1982, 15(2), 334–338.CrossRefGoogle Scholar
  18. 18.
    Zheng, Y.; Zhang, J.; Sun, X.; Li, H.; Ren, Z.; Yan, S. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization. Ind. Eng. Chem. Res. 2017, 56(15), 4580–4587.CrossRefGoogle Scholar
  19. 19.
    Meraga, C.; Marigo, A. Influence of annealing and chain defects on the melting behavior of poly(vinylidene fluoride). Eur. Polym. J. 2003, 39(8), 1713–1720.CrossRefGoogle Scholar
  20. 20.
    Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39(4), 683–706.CrossRefGoogle Scholar
  21. 21.
    Tashiro, K.; Kobayashi, M.; Tadokoro, H. Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III. Macromolecules 1981, 14(6), 1757–1764.CrossRefGoogle Scholar
  22. 22.
    Wang, Y. T.; Liu, P. R.; Lu, Y.; Men, Y. F. Mechanism of polymorph selection during crystallization of random butene-1/ethylene copolymer. Chinese J. Polym. Sci. 2016, 34(8), 1014–1020.CrossRefGoogle Scholar
  23. 23.
    Hu, D. D.; Ye, S. B.; Yu, F.; Feng, J. C. Further understanding on the three domains of isotactic polypropylene by investigating the crystalline morphologies evolution after treatment at different domains. Chinese J. Polym. Sci. 2016, 34(3), 344–358.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yi-Ran Zheng
    • 1
  • Jie Zhang
    • 1
  • Xiao-Li Sun
    • 1
  • Hui-Hui Li
    • 1
  • Zhong-Jie Ren
    • 1
  • Shou-Ke Yan
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations