Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 576–583 | Cite as

A Biomimetic Surface for Infection-resistance through Assembly of Metal-phenolic Networks

  • Ru-Jian Jiang
  • Shun-Jie Yan
  • Li-Mei Tian
  • Shi-Ai Xu
  • Zhi-Rong Xin
  • Shi-Fang Luan
  • Jing-Hua Yin
  • Lu-Quan Ren
  • Jie Zhao


Despite the fact that numerous infection-resistant surfaces have been developed to prevent bacterial colonization and biofilm formation, developing a stable, highly antibacterial and easily produced surface remains a technical challenge. As a crucial structural component of biofilm, extracellular DNA (eDNA) can facilitate initial bacterial adhesion, subsequent development, and final maturation. Inspired by the mechanistic pathways of natural enzymes (deoxyribonuclease), here we report a novel antibacterial surface by employing cerium (Ce(IV)) ion to mimic the DNA-cleavage ability of natural enzymes. In this process, the coordination chemistry of plant polyphenols and metal ions was exploited to create an in situ metal-phenolic film on substrate surfaces. Tannic acid (TA) works as an essential scaffold and Ce(IV) ion acts as both a cross-linker and a destructor of eDNA. The Ce(IV)-TA modified surface exhibited highly enhanced bacteria repellency and biofilm inhibition when compared with those of pristine or Fe(III)-TA modified samples. Moreover, the easily produced coatings showed high stability under physiological conditions and had nontoxicity to cells for prolonged periods of time. This as-prepared DNA-cleavage surface presents versatile and promising performances to combat biomaterial-associated infections.


Antibacterial surface Metal-phenolic coating DNA-cleavage Biomimetic surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Research Program Funds of Jilin University (Nos. 419080500665 and 451170301076), and the Natural Science Foundation of Shandong Province (No. ZR2015EM036).

Supplementary material

10118_2018_2032_MOESM1_ESM.pdf (1.9 mb)
A Novel Biomimetic Surface for Infection-resistance though Assembly of Metal-phenolic Networks


  1. 1.
    Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci. 2017, 35(6), 713–720.CrossRefGoogle Scholar
  2. 2.
    Campoccia, D.; Montanaro, L.; Arciola, C. R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34(34), 8533–8554.CrossRefGoogle Scholar
  3. 3.
    Pozzi, C.; Waters, E. M.; Rudkin, J. K.; Schaeffer, C. R. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012, 8(4), DOI: 10.1371/journal.ppat.1002626Google Scholar
  4. 4.
    Banerjee, I.; Pangule, R. C.; Kane, R. S.; Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23(6), 690–718.CrossRefGoogle Scholar
  5. 5.
    Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23(6), 690–718.CrossRefGoogle Scholar
  6. 6.
    Nie, G. H.; Wu, W. J.; Yue, X.; Liao, S. J. Synthesis and properties of hydroxide conductive polymers carrying dense aromatic side-chain quaternary ammonium groups. Chinese J. Polym. Sci. 2017, 35(7), 823–836.CrossRefGoogle Scholar
  7. 7.
    Shi, J.; Liu, Y.; Wang, Y.; Zhang, J. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci. Rep. 2015, 5, 16336–16341CrossRefGoogle Scholar
  8. 8.
    Swartjes, J. J.; Das, T.; Sharifi, S.; Subbiahdoss, G.; van der Mei, H. C. A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm. Adv. Funct. Mater. 2013, 23(22), 2843–2849.CrossRefGoogle Scholar
  9. 9.
    Das, T., Sehar, S., Manefield, M., The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Env. Microbiol. Rep. 2013, 5(6), 778–786.CrossRefGoogle Scholar
  10. 10.
    Whitchurch, C. B.; Tolker-Nielsen, T.; Ragas, P. C.; Extracellular DNA required for bacterial biofilm formation. Science 2002, 295(5559), 1487–1487.CrossRefGoogle Scholar
  11. 11.
    Yuan, S.; Zhao, J.; Luan, S.; Yan, S.; Nuclease-functionalized poly(styrene-b-isobutylene-b-styrene) surface with antiinfection and tissue integration bifunctions. ACS Appl. Mater. Interfaces 2014, 6(20), 18078–18086.CrossRefGoogle Scholar
  12. 12.
    Komiyama, M.; Takeda, N.; Shigekawa, H.; Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications. Chem. Commun. 1999, 16, 1443–1451.CrossRefGoogle Scholar
  13. 13.
    Li, F. Z.; Xie, J. Q.; Feng, F. M. Copper and zinc complexes of a diaza-crown ether as artificial nucleases for the efficient hydrolytic cleavage of DNA. New J. Chem., 2015, 39(7), 5654–5660.CrossRefGoogle Scholar
  14. 14.
    Livieri, M.; Mancin, F.; Saielli, G.; Chin, J. Mimicking enzymes: cooperation between organic functional groups and metal ions in the cleavage of phosphate diesters. Chem. Eur. J. 2007, 13(8), 2246–2256.CrossRefGoogle Scholar
  15. 15.
    Chen, Z.; Ji, H.; Liu, C.; Qu, X. A multinuclear metal complex based dnase mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angew. Chem. Int. Ed. 2016, 128(36), 10890–10894.CrossRefGoogle Scholar
  16. 16.
    Jiang, R.; Xin, Z.; Xu, S.; Shi, H.; Enzyme-mimicking polymer brush-functionalized surface for combating biomaterialassociated infections. Appl. Surf. Sci. 2017, 423, 869–880.CrossRefGoogle Scholar
  17. 17.
    Huang, X. F.; Jia, J. W.; Wang, Z. K.; Hu, Q. L.; A novel chitosan-based sponge coated with self-assembled thrombin/tannic acid multilayer films as a hemostatic dressing. Chinese J. Polym. Sci. 2015, 33(2), 284–290.CrossRefGoogle Scholar
  18. 18.
    Quideau, S.; Deffieux, D.; Douat-Casassus, C. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50(3), 586–621.CrossRefGoogle Scholar
  19. 19.
    Ejima, H.; Richardson, J. J.; Liang, K.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341(6142), 154–157.CrossRefGoogle Scholar
  20. 20.
    Rahim, M. A.; Ejima, H.; Cho, K. L.; Caruso, F. Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem. Mater. 2014, 26(4), 1645–1653.CrossRefGoogle Scholar
  21. 21.
    Guo, J.; Ping, Y.; Ejima, H.; Alt, K.; Caruso, F. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 2014, 53(22), 5546–5551.CrossRefGoogle Scholar
  22. 22.
    Yang, L.; Han, L.; Jia, L.; A novel platelet-repellent polyphenolic surface and its micropattern for platelet adhesion detection. ACS Appl. Mater. Interfaces 2016, 8(40), 26570–26577.CrossRefGoogle Scholar
  23. 23.
    Lee, H.; Dellatore, S. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318(5849), 426–430.CrossRefGoogle Scholar
  24. 24.
    Han, X.; Zhou, Y.; Hu, J.; Liu, H. Surface modification and characterization of SEBS films obtained by in situ and ex situ oxidization with potassium permanganate. J. Polym. Sci., Part B: Polym. Phys. 2010, 48(21), 2262–2273.CrossRefGoogle Scholar
  25. 25.
    Nejadnik, M. R.; van der Mei, H. C.; Norde, W. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials 2008, 29(30), 4117–4121.CrossRefGoogle Scholar
  26. 26.
    Kim, T. J.; Silva, J. L.; Jung, Y. S. Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chem. 2011, 126(1), 116–120.CrossRefGoogle Scholar
  27. 27.
    Flemming, H. C.; Wingender, J.; Szewzyk, U.; Kjelleberg, S. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14(9), 563–575.CrossRefGoogle Scholar
  28. 28.
    Tamboli, M. S.; Kulkarni, M. V.; Patil, R. H.; Kale, B. B. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf. B 2012, 92, 35–41.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ru-Jian Jiang
    • 1
    • 2
  • Shun-Jie Yan
    • 3
  • Li-Mei Tian
    • 1
  • Shi-Ai Xu
    • 2
  • Zhi-Rong Xin
    • 2
  • Shi-Fang Luan
    • 3
  • Jing-Hua Yin
    • 3
  • Lu-Quan Ren
    • 1
  • Jie Zhao
    • 1
  1. 1.Key Laboratory of Bionic Engineering, Ministry of EducationJilin UniversityChangchunChina
  2. 2.School of Chemistry and Chemical EngineeringYantai UniversityYantaiChina
  3. 3.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations