Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 665–674 | Cite as

Changes of the Molecular Mobility of Poly(ε-caprolactone) upon Drawing, Studied by Dielectric Relaxation Spectroscopy

  • Xiao-Yan Yang
  • Shao-Shuai Liu
  • Alexander V. Korobko
  • Stephen J. Picken
  • Nicolaas A. M. Besseling


Dielectric relaxation spectroscopy (DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation energy of the α process, which corresponds to the dynamic glass transition, increases upon drawing. The enlarged gap between the activation energies of the α process and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes. At low drawing ratios the a process connects with the β process, while at the highest drawing ratio in our measurements, the a process is continuous with the α process. This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing. As the draw ratio increases, the α relaxation broadens and decreases its intensity, indicating an increasing heterogeneity. We observed slope changes in the α traces, when the temperature decreases below that at which τ α ≈ 1 s. This may indicate the glass transition from the ‘rubbery’ state to the non-equilibrium glassy state.


Semicrystalline polymer Dielectric relaxation spectroscopy Molecular mobility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research forms part of the research programme of the Dutch Polymer Institute (DPI), project#623.


  1. 1.
    Omid, Y.; Hamid, G. Development of a simple model to characterize the complex constrained polymer chains in polymer nanocomposites at the interphase of amorphous/semicrystalline ethylene vinyl acetate and nanosheets. J. Compos. Mater. 2016, 51(2), 179–186.Google Scholar
  2. 2.
    Perez-de-Eulate, N. G.; Di Lisio, V.; Cangialosi, D. Glass Transition and Molecular Dynamics in Polystyrene Nanospheres by Fast Scanning Calorimetry. ACS Macro Lett. 2017, 6(6), 859–863.CrossRefGoogle Scholar
  3. 3.
    Sharma, R. P.; Green, P. F. Role of “Hard” and “soft” confinement on polymer dynamics at the nanoscale. ACS Macro Lett. 2017, 6(9), 908–914.CrossRefGoogle Scholar
  4. 4.
    Lee, K. H.; Kim, H. Y.; Khil, M. S.; Ra, Y. M.; Lee, D. R. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer. 2003, 44(4), 1287–1294.CrossRefGoogle Scholar
  5. 5.
    Chen, Z.; Cao, L.; Wang, L.; Zhu, H.; Jiang, H. Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(ε-caprolactone) and gelatin. J. Appl. Polym. Sci. 2013, 127(6), 4225–4232.CrossRefGoogle Scholar
  6. 6.
    Bernards, D. A.; Bhisitkul, R. B.; Wynn, P.; Steedman, M. R.; Lee, O. T.; Wong, F.; Thoongsuwan, S.; Desai, T. A. Ocular Biocompatibility and Structural Integrity of Micro- and Nanostructured Poly(caprolactone) Films. J. Ocul. Pharmacol. Th. 2013, 29(2), 249–257.CrossRefGoogle Scholar
  7. 7.
    Shan, G. F.; Yang, W.; Yang, M. B.; Xie, B. H.; Fu, Q.; Mai, Y. W. Investigation on tensile deformation behavior of semi-crystalline polymers. J. Macromol. Sci. B 2009, 48(7), 799–811.CrossRefGoogle Scholar
  8. 8.
    Li, H.; Zhou, W.; Ji, Y.; Hong, Z.; Miao, B.; Li, X.; Zhang, J.; Qi, Z.; Wang, X.; Li, L.; Li, Z. M. Spatial distribution of crystal orientation in neck propagation: An in-situ microscopic infrared imaging study on polyethylene. Polymer 2013, 54(2), 972–979.CrossRefGoogle Scholar
  9. 9.
    Li, J. X.; Cheung, W. L.; Chan, C. M. On deformation mechanisms of β-polypropylene 3. Lamella structures after necking and cold drawing. Polymer 1999, 40(13), 3641–3656.CrossRefGoogle Scholar
  10. 10.
    Peterlin, A.; Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 1971, 6(6), 490–508.CrossRefGoogle Scholar
  11. 11.
    Van Aerle, N. A. J. M.; Braam, A. W. M. A structural study on solid state drawing of solution-crystallized ultra-high molecular weight polyethylene. J. Mater. Sci. 1988, 23(12), 4429–4436.CrossRefGoogle Scholar
  12. 12.
    Mcrae, M. A.; Maddams, W. F.; Preedy, J. E. An infra-red spectroscopic and X-ray diffraction study of cold-drawn high density polyethylene samples. J. Mater. Sci. 1976, 11(11), 2036–2044.CrossRefGoogle Scholar
  13. 13.
    Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature 1978, 272(5650), 226–229.CrossRefGoogle Scholar
  14. 14.
    Nozue, Y.; Shinohara, Y.; Ogawa, Y.; Takamizawa, T.; Sakurai, T.; Kasahara, T.; Yamaguchi, N.; Yagi, N.; Amemiya, Y. Deformation behavior of banded spherulite during drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement. Polymer 2010, 51(1), 222–231.CrossRefGoogle Scholar
  15. 15.
    Li, J. X.; Cheung, W. L. On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer 1998, 39(26), 6935–6940.CrossRefGoogle Scholar
  16. 16.
    Zhao, Y.; Keroack, D.; Prud¢homme, R. Crystallization under strain and resultant orientation of poly(ε-caprolactone) in miscible blends. Macromolecules 1999, 32(4), 1218–1225.CrossRefGoogle Scholar
  17. 17.
    Pieruccini, M.; Ezquerra, T. A.; Lanza, M. Phenomenological model for the confined dynamics in semicrystalline polymers: the multiple α relaxation in cold-crystallized poly(ethylene terephthalate). J. Chem. Phys. 2007, 127(10), DOI: 10.1063/1.2771166Google Scholar
  18. 18.
    Hakme, C.; Stevenson, I.; David, L.; Sixou, B.; Voice, A.; Seytre, G.; Boiteux, G. Molecular mobility in poly(ethylene naphthalene 2,6 dicarboxylate) (PEN) dielectric films. Proceeding of the 2004 IEEE International Conference on Solid Dielectrics. 2004, Vol. 1, 37–40.CrossRefGoogle Scholar
  19. 19.
    Hakme, C.; Stevenson, I.; David, L.; Seytre, G.; Boiteux, G. Effect of orientation and crystallization on dielectric and mechanical relaxations in uniaxially stretched poly(ethylene naphthalene 2,6 dicarboxylate) (PEN) films. J. Non-Cryst. Solids 2006, 352(42-49), 4746–4752.CrossRefGoogle Scholar
  20. 20.
    Nogales, A.; Denchev, Z.; Šics, I.; Ezquerra, T. A. Influence of the crystalline structure in the segmental mobility of semicrystalline polymers: poly(ethylene naphthalene-2,6-dicarboxylate). Macromoleculs 2000, 33(25), 9367–9375.CrossRefGoogle Scholar
  21. 21.
    Frűbing, P.; Kremmer, A.; Gerhard-Multhaupt, R.; Spanoudaki, A.; Pissis, P. Relaxation processes at the glass transition in polyamide 11: from rigidity to viscoelasticity. J. Chem. Phys. 2006, 125(21), DOI: 10.1063/1.2360266Google Scholar
  22. 22.
    Donth, E. The glass transition: relaxation dynamics in liquids and disordered materials, Springer-Verlag Berlin Heidelberg, New York, 2001, p. 199.CrossRefGoogle Scholar
  23. 23.
    Grimau, M.; Laredo, E.; Pérez, Y. M.; Bello, C. A. Study of dielectric relaxation modes in poly(ε-caprolactone): molecular weight, water sorption, and merging effects. J. Chem. Phys. 2001, 114(15), 6417–6425.CrossRefGoogle Scholar
  24. 24.
    Scönhals, A.; Kremer, F., in “Broadband dielectric spectroscopy” ed. by Kremer, F.; Scönhals, A., Springer-Verlag Berlin Heidelberg, New York, 2003, p. 59.CrossRefGoogle Scholar
  25. 25.
    Alcock, B.; Cabrera, N. O.; Barkoula, N. M.; Raynolds, C. T.; Govaert, L. E.; Peijs, T. The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos. Sci. Technol. 2007, 67(10), 2061–2070.CrossRefGoogle Scholar
  26. 26.
    Qiu, Z.; Yang, W.; Ikehara, T.; Nishi, T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone). Polymer 2005, 46(25), 11814–11819.CrossRefGoogle Scholar
  27. 27.
    Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur. Polym. J. 1972, 8(3), 449–463.CrossRefGoogle Scholar
  28. 28.
    Bello, A.; Laredo, E.; Grimau, M. Comparison of analysis of dielectric spectra of PCL in the ε* and the M* formalism. J. Non-Cryst. Solids. 2007, 353(47-51), 4283−4287.CrossRefGoogle Scholar
  29. 29.
    Serra, R. S. I. J.; Ivirico, L. E.; Dueñas, J. M. M.; Balado, A. A.; Ribelles, J. L. G.; Sánchez, M. S. Segmental dynamics in poly(ε-caprolactone)/poly(L-lactide) copolymer networks. J. Polym. Sci., Part B: Polym. Phys. 2009, 47(2), 183–193.CrossRefGoogle Scholar
  30. 30.
    Lee, H.; Paeng, K.; Swallen, S. F.; Ediger, M. D. Direct measurement of molecular mobility in actively deformed polymer glasses. Science 2009, 323(5911), 231–234.CrossRefGoogle Scholar
  31. 31.
    Suljovrujić, E. Dielectric studies of molecular β-relaxation in low density polyethylene: the influence of drawing and ionizing radiation. Polymer 2002, 43(22), 5969–5978. (Note: the β and γ relaxations in the reference are the α and β relaxations in this paper, respectively)CrossRefGoogle Scholar
  32. 32.
    Adam, G.; Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 143(1), 139–146.CrossRefGoogle Scholar
  33. 33.
    Schröter, K.; Unger, R.; Reissig, S.; Garwe, F.; Kahle, S.; Beiner, M.; Donth, E. Dielectric spectroscopy in the αβ splitting region of glass transition in poly(ethyl methacrylate) and poly(n-butyl methacrylate): different evaluation methods and experimental conditions. Macromolecules 1998, 31(25), 8966–8972.CrossRefGoogle Scholar
  34. 34.
    Hansen, C.; Stickel, F.; Berger, T.; Richert, R.; Fischer, E. W. Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β-relaxation of 1-propanol and ο-terphenyl. J. Chem. Phys. 1997, 107(4), 1086–1093.CrossRefGoogle Scholar
  35. 35.
    Smith, G. D.; Bedrov, D. Relationship between the α- and β-relaxation processes in amorphous polymers: Insight from atomistic molecular dynamics simulations of 1,4-polybutadiene melts and blends. J. Polym. Sci., Part B: Polym. Phys. 2007, 45(6), 627–643.CrossRefGoogle Scholar
  36. 36.
    Götze, W. in “Liquid, Freezing and the Glass Transition”, ed. by Hansen, J. P.; Levesque, D.; Zinn-Justin, J., North-Hollond, Amsterdam, 1991, p. 287.Google Scholar
  37. 37.
    Saiter, J. M.; Grenet, J.; Saiter, E. A.; Delbreilh, L. Glass Transition temperature and value of the relaxation time at Tg in vitreous polymers. Macromol. Symp. 2007, 258(1), 152–161.CrossRefGoogle Scholar
  38. 38.
    Li, J. X.; Cheung, W. L.; Chan, C. M. On deformation mechanisms of β-polypropylene 2. changes of lamellar structure caused by tensile load. Polymer 1999, 40(8), 2089–2102.CrossRefGoogle Scholar
  39. 39.
    Murthy, N. S.; Minor, H.; Bednarczyk, C. Structure of the amorphous phase in oriented polymers. Macromolecules 1993, 26(7), 1712–1721.CrossRefGoogle Scholar
  40. 40.
    Liedermann, K. A simple formula for the temperature dependence of the relaxation frequency in glassy systems. Collid. Polym. Sci. 1996, 274(1), 20–26.CrossRefGoogle Scholar
  41. 41.
    Kremer F.; Huwe A.; Schönhals A.; Różański S. A., in “Broadband dielectric spectroscopy” ed. by Kremer, F.; Scönhals, A., Springer-Verlag Berlin Heidelberg, New York, 2003, p. 171.CrossRefGoogle Scholar
  42. 42.
    Arndt, M.; Stannarius, R.; Groothues, H.; Hempel, E.; Kremer, F. Length Scale of Cooperativity in the Dynamic Glass Transition. Phys. Rev. Lett. 1997, 79(11), 2077–2080.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-Yan Yang
    • 1
  • Shao-Shuai Liu
    • 1
  • Alexander V. Korobko
    • 2
    • 3
  • Stephen J. Picken
    • 2
    • 3
  • Nicolaas A. M. Besseling
    • 2
    • 3
  1. 1.Lucky Research InstituteChina Lucky Group CorporationBaodingChina
  2. 2.Department of Chemical EngineeringDelft University of TechnologyDelftthe Netherlands
  3. 3.Dutch Polymer Institute (DPI)Eindhoventhe Netherlands

Personalised recommendations