Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 641–648 | Cite as

Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability

Article
  • 38 Downloads

Abstract

In order to extend the application of epoxy vitrimer, 1,4-cyclohexanedicarboxylic acid (CHDA) was used as a co-curing agent and structure modifier for sebacic acid (SA) cured diglycidyl ether of bisphenol A (DGEBA) epoxy vitrimer to tailor the mechanical properties of epoxy vitrimers with 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD) as a transesterification catalyst. The glass transition temperature (Tg) of vitrimer increased gradually with the increase in CHDA content. Vitrimers behaved from elastomer to tough and hard plastics were successfully achieved by varying the feed ratio of CHDA to SA. Both the Young’s modulus and storage modulus increased apparently with the increase in CHDA content. Stress relaxation measurement indicated that more prominent stress relaxation occurred at elevated temperatures and the stress relaxation decreased with the increase of CHDA content due to the reduced mobility of the vitrimer backbone. The vitrimers showed excellent recyclability as evidenced by the unchanged gel fraction and mechanical properties after compression molded for several times. With tunable mechanical properties, the epoxy vitrimers may find extensive potential applications.

Keywords

Epoxy vitrimer Mechanical properties Stress-relaxation Recyclability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51703188) and Fundamental Research Funds for the Central Universities (Nos. XDJK2017A016 and XDJK2017C022).

References

  1. 1.
    Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334(6058), 965–968.CrossRefGoogle Scholar
  2. 2.
    Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide vitrimers. ACS Macro Lett. 2014, 3(7), 607–610.CrossRefGoogle Scholar
  3. 3.
    Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34(7), 581–604.CrossRefGoogle Scholar
  4. 4.
    Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopicallyresponsive structurally dynamic polymers. Nat. Mater. 2011, 10(1), 14–27.CrossRefGoogle Scholar
  5. 5.
    Azcune, I.; Odriozola, I. Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more. Eur. Polym. J. 2016, 84, 147–160.CrossRefGoogle Scholar
  6. 6.
    Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N. Covalent adaptable networks (CANs): aunique paradigm in cross-linked polymers. Macromolecules 2010, 43(6), 2643–2653.CrossRefGoogle Scholar
  7. 7.
    Kloxin, C. J.; Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 2013, 42(17), 7161–7173.CrossRefGoogle Scholar
  8. 8.
    Adzima, B. J.; Aguirre, H. A.; Kloxin, C. J.; Scott, T. F.; Bowman, C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network. Macromolecules 2008, 41(23), 9112–9117.CrossRefGoogle Scholar
  9. 9.
    Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295(5560), 1698–1702.CrossRefGoogle Scholar
  10. 10.
    Zhang, J.; Niu, Y.; Huang, C.; Xiao, L.; Chen, Z.; Yang, K.; Wang, Y. Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym. Chem. 2012, 3(6), 1390–1393.CrossRefGoogle Scholar
  11. 11.
    Tasdelen, M. A. Diels-Alder “click” reactions: recent applications in polymer and material science. Polym. Chem. 2011, 2(10), 2133–2145.CrossRefGoogle Scholar
  12. 12.
    Johnson, L. M.; Ledet, E.; Huffman, N. D.; Swarner, S. L.; Shepherd, S. D.; Durham, P. G.; Rothrock, G. D. Controlled degradation of disulfide-based epoxy thermosets for extreme environments. Polymer 2015, 64, 84–92.CrossRefGoogle Scholar
  13. 13.
    Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabanero, G.; Rodriguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2016, 3(3), 241–247.CrossRefGoogle Scholar
  14. 14.
    Ruiz de Luzuriaga, A.; Matxain, J. M.; Ruiperez, F.; Martin, R.; Asua, J. M.; Cabanero, G.; Odriozola, I. Transient mechanochromism in epoxy vitrimer composites containing aromatic disulfide crosslinks. J. Mater. Chem. C 2016, 4(26), 6220–6223.CrossRefGoogle Scholar
  15. 15.
    Xu, C. H.; Cao, L. M.; Lin, B. F.; Liang, X. Q.; Chen, Y. K. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8(27), 17728–17737.CrossRefGoogle Scholar
  16. 16.
    Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134(18), 7664–7667.CrossRefGoogle Scholar
  17. 17.
    Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 2015, 137(44), 14019–14022.CrossRefGoogle Scholar
  18. 18.
    Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26(23), 3938–3942.CrossRefGoogle Scholar
  19. 19.
    Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7(1), 30–38.CrossRefGoogle Scholar
  20. 20.
    Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C 2016, 4(25), 5890–5906.CrossRefGoogle Scholar
  21. 21.
    Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future. Chem. Rev. 2014, 114(2), 1082–1115.CrossRefGoogle Scholar
  22. 22.
    Wan, J.; Zhao, J.; Gan, B.; Li, C.; Molina-Aldareguia, J.; Zhao, Y.; Pan, Y. T.; Wang, D. Y. Ultrastiff biobased epoxy resin with high T g and low permittivity: from synthesis to properties. ACS Sustain. Chem. Eng. 2016, 4(5), 2869–2880.CrossRefGoogle Scholar
  23. 23.
    Yang, S.; Chen, J. S.; Körner, H.; Breiner, T.; Ober, C. K.; Poliks, M. D. Reworkable epoxies: thermosets with thermally cleavable groups for controlled network breakdown. Chem. Mater. 1998, 10(6), 1475–1482.CrossRefGoogle Scholar
  24. 24.
    Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13(1), 36–41.CrossRefGoogle Scholar
  25. 25.
    Yang, Y.; Pei, Z.; Zhang, X.; Tao, L.; Wei, Y.; Ji, Y. Carbon nanotube-vitrimer composite for facile and efficient photo-welding of epoxy. Chem. Sci. 2014, 5(9), 3486–3492.CrossRefGoogle Scholar
  26. 26.
    Chabert, E.; Vial, J.; Cauchois, J. P.; Mihaluta, M.; Tournilhac, F. Multiple welding of long fiber epoxy vitrimer composites. Soft Matter 2016, 12(21), 4838–4845.CrossRefGoogle Scholar
  27. 27.
    Demongeot, A.; Mougnier, S. J.; Okada, S.; Soulie-Ziakovic, C.; Tournilhac, F. Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym. Chem. 2016, 7(27), 4486–4493.CrossRefGoogle Scholar
  28. 28.
    Imbernon, L.; Norvez, S.; Leibler, L. Stress relaxation and self-adhesion of rubbers with exchangeable links. Macromolecules 2016, 49(6), 2172–2178.CrossRefGoogle Scholar
  29. 29.
    Legrand, A.; Soulie-Ziakovic, C. Silica-epoxy vitrimer nanocomposites. Macromolecules 2016, 49(16), 5893–5902.CrossRefGoogle Scholar
  30. 30.
    Pei, Z.; Yang, Y.; Chen, Q.; Wei, Y.; Ji, Y. Regional shape control of strategically assembled multishape memory vitrimers. Adv. Mater. 2016, 28(1), 156–160.CrossRefGoogle Scholar
  31. 31.
    Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138(7), 2118–2121.CrossRefGoogle Scholar
  32. 32.
    Yang, Z.; Wang, Q.; Wang, T. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl. Mater. Interfaces 2016, 8(33), 21691–21699.CrossRefGoogle Scholar
  33. 33.
    Altuna, F. I.; Hoppe, C. E.; Williams, R. J. J. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Adv. 2016, 6(91), 88647–88655.CrossRefGoogle Scholar
  34. 34.
    Zeng, J. B.; Li, Y. D.; Zhu, Q. Y.; Yang, K. K.; Wang, X. L.; Wang, Y. Z. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 2009, 50(5), 1178–1186.CrossRefGoogle Scholar
  35. 35.
    Vinogradov, G. V.; Isayev, A. I.; Katsyutsevich, E. V. Critical regimes of oscillatory deformation of polymeric systems above glass transition and melting temperatures. J.p Apl. Polym. Sci. 1978, 22(3), 727–749.CrossRefGoogle Scholar
  36. 36.
    Denissen, W.; Rivero, G.; Nicolay, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous urethane vitrimers. Adv. Funct. Mater. 2015, 25(16), 2451–2457.CrossRefGoogle Scholar
  37. 37.
    Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1(7), 789–792.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations