Skip to main content
Log in

A simple and effective boundary model in nonequilibrium molecular dynamics method

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We propose a simple and effective boundary model in a nonequilibrium molecular dynamics (NEMD) simulation to study the out-of-equilibrium dynamics of polymer fluids. The present boundary model can effectively weaken the depletion effect and the slip effect near the boundary, and remove the unwanted heat instantly. The validity of the boundary model is checked by investigating the flow behavior of dilute polymer solution driven by an external force. Reasonable density distributions of both polymer and solvent particles, velocity profiles of the solvent and temperature profiles of the system are obtained. Furthermore, the studied polymer chain shows a cross-streaming migration towards center of the tube, which is consistent with that predicted in previous literatures. These numerical results give powerful evidences for the validity of the present boundary model. Besides, the boundary model can also be used in other flows in addition to the Poiseuille flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, D., Cui, K., Huang, N., Wang, Z. and Li, L., Sci. China Chem., 2015, 58: 1570

    Article  CAS  Google Scholar 

  2. Sussman, D.M., Tung, W.S., Winey, K.I., Schweizer, K.S. and Rigglemann, R.A., Macromolecules, 2014, 47: 6462

    Article  CAS  Google Scholar 

  3. Barrat, J.L. and Bocquet, L., Phys. Rev. Lett., 1999, 82: 4671

    Article  CAS  Google Scholar 

  4. He, Z. and Zhou, J., Carbon, 2014, 78: 500

    Article  CAS  Google Scholar 

  5. ClarkII, J.K. and Paddison, S.J., Phys. Chem. Chem. Phys., 2014, 16: 17756

    Article  CAS  Google Scholar 

  6. Hu, C., Bai, M., Lv, J., Wang, P., Zhang, L. and Li, X., Microfluid Nanofluid, 2014, 17: 581

    Article  CAS  Google Scholar 

  7. Succi, S., “The lattice boltzmann equation for fluid dynamics and beyond”, Clarendon Press, Oxford, 2001

    Google Scholar 

  8. Kekre, R., Butler, J.E. and Ladd, A.J., Phys. Rev. E, 2010, 82: 011802

    Article  Google Scholar 

  9. Todd, B.D. and Daivis, P.J., Molecular Simulation, 2007, 33: 189

    Article  CAS  Google Scholar 

  10. Ouyang, Y., Hao, L., Ma, Y. and Guo, H., Sci. China Chem., 2015, 58: 1013

    Article  Google Scholar 

  11. Allen, M.P. and Tildesley, D.J., “Computer simulation of liquids”, Clarendon: Oxford, 1987

    Google Scholar 

  12. Frenkel, D. and Smit, B., “Understanding molecular simulation: from algorithms to applications”, Academic Press, 2002

    Google Scholar 

  13. Basconi, J.E. and Shirts, M.R., J. Chem. Theory Comput., 2013, 9: 2887

    Article  CAS  Google Scholar 

  14. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 1984, 81: 3684

    Article  CAS  Google Scholar 

  15. Todd, B.D. and Evans, D.J., Phys. Rev. E., 1997, 55: 2800

    Article  CAS  Google Scholar 

  16. Todd, B.D., Evans, D.J. and Daivis, P.J., Phys. Rev. E, 1995, 52: 1627

    Article  CAS  Google Scholar 

  17. Khare, R., de Pablo, J. and Yethiraj, A., J. Chem. Phys., 1997, 107: 2589

    Article  CAS  Google Scholar 

  18. Heinbuch, U. and Fischer, J., Phys. Rev. A, 1988, 40: 1144

    Article  Google Scholar 

  19. Thompson, P.A., Nature, 1997, 389: 360

    Article  CAS  Google Scholar 

  20. Soong, C.Y., Yen, T.H. and Tzeng, P.Y., Phys. Rev. E, 2007, 76: 036303

    Article  CAS  Google Scholar 

  21. Varnik, F. and Binder, K., J. Chem. Phys., 2002, 117: 6336

    Article  CAS  Google Scholar 

  22. Fu, C., Sun, Z. and An, L., Chinese J. Polym. Sci., 2013, 31(3): 388

    Article  CAS  Google Scholar 

  23. Li, Z.Q., Li, Y.J., Wang, Y.M., Sun, Z.Y. and An, L.J., Macromolecules, 2010, 43: 5896

    Article  CAS  Google Scholar 

  24. Dünweg, B. and Kremer, K., J. Chem. Phys., 1993, 99: 6983

    Article  Google Scholar 

  25. Fu, C., Ouyang, W., Sun, Z. and An, L., J. Chem. Phys., 2007, 127: 044903

    Article  Google Scholar 

  26. Underhill, P.T. and Doyle, P.S., J. Non-Newtonian Fluid Mech., 2004, 122: 3

    Article  CAS  Google Scholar 

  27. Fu, C., Sun, Z. and An, L., J. Phys. Chem. B, 2011, 115: 11345

    Article  CAS  Google Scholar 

  28. Fu, C., Jia, X., Sun, Z. and An, L., Polymer, 2014, 55: 4538

    Article  CAS  Google Scholar 

  29. Rappaport, D.C., “The art of molecular dynamics simulation”, Cambridge university press, 1997

    Google Scholar 

  30. Koplik, J., Banavar, J.R. and Willemsen, J.F., Phys. Rev. Lett., 1988, 60: 1282

    Article  Google Scholar 

  31. Reddig, S. and Stark, H., J. Chem. Phys., 2011, 135: 165101

    Article  CAS  Google Scholar 

  32. Sekhon, G., Armstrong, R.C. and Jhon, M.S., J. Polym. Sci., Part B: Polym. Phys., 1982, 20: 947

    CAS  Google Scholar 

  33. Ma, B.H. and Graham, M.D., Phys. Fluids, 2005, 17: 083103

    Article  Google Scholar 

  34. Huang, C.C., Sutmann, G., Gompper, G. and Winkler, R.G., Europhys. Lett., 2011, 93: 54004

    Article  Google Scholar 

  35. Winkler, R.G., Phys. Rev. Lett., 2006, 97: 128301

    Article  Google Scholar 

  36. Gerashchenko, S. and Steinberg, V., Phys. Rev. Lett., 2006, 96: 038304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-yan Sun  (孙昭艳).

Additional information

This work was financially supported by the National Basic Research Program of China (973 Program, 2012CB821500), and supported by the National Natural Science Foundation of China (Nos. 21222407, 21104082 and 21474111).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Cl., Sun, Zy. A simple and effective boundary model in nonequilibrium molecular dynamics method. Chin J Polym Sci 34, 1150–1157 (2016). https://doi.org/10.1007/s10118-016-1831-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-016-1831-3

Keywords

Navigation