Navigation leads for exploratory search and navigation in digital libraries


Exploratory search (in contrary to the traditional lookup search) is characterized by the search tasks that have exploration, learning, and investigation as their goals. An example of this task in the domain of digital libraries is exploration of a new domain, a task that is typically performed by a researcher novice, such as a master’s or a doctoral student. To support the researcher novices in this task, we proposed an approach of exploratory search and navigation using navigation leads, with which we augment the search results, and which serve as navigation starting points allowing users to follow a specific path by filtering only documents pertinent to the selected lead. In this paper, we present a method of selection of navigation leads considering their navigational value in the form of a corpus relevance. We examined this method by the means of an offline evaluation on the dataset from a bookmarking service Annota. We showed that considering the corpus relevance helps to cover significantly more (relevant) documents when conducting the exploratory search. In addition, our relevance metric combining document and corpus relevance of a lead outperformed the popularity metric based on the frequency of the term in the document corpus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.


  1. 1.

    Bates MJ (1989) The design of browsing and berrypicking techniques for the online search interface. Online Rev 13(5):407–424.

    Article  Google Scholar 

  2. 2.

    Belkin N, Oddy R, Brooks H (1982a) ASK for information retrieval: part I. Background and theory. J Doc 38(2):61–71.

    Article  Google Scholar 

  3. 3.

    Belkin N, Oddy R, Brooks H (1982b) ASK for information retrieval: part II. Results of a design study. J Doc 38(3):145–164.

    Article  Google Scholar 

  4. 4.

    Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3(4–5):993–1022.

    Article  MATH  Google Scholar 

  5. 5.

    Broder A (2002) A taxonomy of web search. ACM SIGIR Forum 36(2):3–10.

    Article  MATH  Google Scholar 

  6. 6.

    Carpineto C, Osiński S, Romano G, Weiss D (2009) A survey of web clustering engines. ACM Comput Surv 41(3):1–38.

    Article  Google Scholar 

  7. 7.

    Choi D, Matni Z, Shah C (2015) Switching sources: a study of people’s exploratory search behavior on social media and the web. Proc Assoc Inf Sci Technol 52(1):1–10.

    Article  Google Scholar 

  8. 8.

    Cierniak G, Scheiter K, Gerjets P (2009) Explaining the split-attention effect: is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Comput Hum Behav 25(2):315–324.

    Article  Google Scholar 

  9. 9.

    Cutting DR, Karger DR, Pedersen JO, Tukey JW (1992) Scatter/gather: a cluster-based approach to browsing large document collections. In: SIGIR ’92: Proceedings of the 15th annual international ACM SIGIR conference on research and development in information retrieval, ACM Press, NY, USA, pp 318–329.

  10. 10.

    Dervin B, Foreman-Wernet L, Lauterbach E (2003) Sense-making methodology reader: selected writings of Brenda Dervin. Communication alternatives. Hampton Press, New York

    Google Scholar 

  11. 11.

    Dimitrov D, Singer P, Helic D, Strohmaier M (2015) The role of structural information for designing navigational user interfaces. In: Proceedings of the 26th ACM conference on hypertext and social media—HT’15, ACM Press, NY, USA, pp 59–68.

  12. 12.

    Dimitrov D, Helic D, Strohmaier M (2018) Tag-based navigation and visualization. In: Brusilovsky P, He D (eds) Social information access, vol 10100. Springer, Berlin, pp 181–212.

    Google Scholar 

  13. 13.

    Golovchinsky G, Diriye A, Dunnigan T (2012) The future is in the past: designing for exploratory search. In: Proceedings of the 4th information interaction in context symposium on—IIIX ’12, ACM Press, NY, USA, pp 52–61.

  14. 14.

    Helic D, Trattner C, Strohmaier M, Andrews K (2011) Are tag clouds useful for navigation? A network-theoretic analysis. Int J Soc Comput Cyber Phys Syst 1(1):33–55.

    Article  Google Scholar 

  15. 15.

    Helic D, Strohmaier M, Granitzer M, Scherer R (2013) Models of human navigation in information networks based on decentralized search. In: Proceedings of the 24th ACM conference on hypertext and social media—HT ’13, ACM Press, New York, USA, pp 89–98.

  16. 16.

    Holub M, Moro R, Sevcech J, Liptak M, Bielikova M (2014) Annota: towards enriching scientific publications with semantics and user annotations. D-Lib Mag.

    Article  Google Scholar 

  17. 17.

    Ingwersen P, Järvelin K (2005) The turn: integration of information seeking and retrieval in context. Springer, Dordrecht

    Google Scholar 

  18. 18.

    Jiang D, Leung KWT, Yang L, Ng W (2015) Query suggestion with diversification and personalization. Knowl Based Syst 89:553–568.

    Article  Google Scholar 

  19. 19.

    Jin X, Sloan M, Wang J (2013) Interactive exploratory search for multi page search results. In: Proceedings of the 22nd international conference on world wide web—WWW ’13, IW3C2, Geneva, Switzerland, pp 655–665

  20. 20.

    Klein G, Moon B, Hoffman R (2006) Making sense of sensemaking 2: a macrocognitive model. Intell Syst 21:88–92

    Article  Google Scholar 

  21. 21.

    Kong W, Allan J (2014) Extending faceted search to the general web. In: Proceedings of the 23rd ACM international conference on information and knowledge management—CIKM ’14, ACM Press, NY, USA, pp 839–848.

  22. 22.

    Kramár T, Barla M, Bieliková M (2013) Personalizing search using socially enhanced interest model, built from the stream of user’s activity. J Web Eng 12(1–2):65–92

    Google Scholar 

  23. 23.

    Kuhlthau CC (2009) Information search process. J Financ Serv Mark.

    Article  Google Scholar 

  24. 24.

    Kules B, Capra R, Banta M, Sierra T (2009) What do exploratory searchers look at in a faceted search interface? In: Proceedings of the 9th ACM/IEEE-CS joint conference on digital libraries—JCDL’09, ACM Press, NY, USA, pp 313–322.

  25. 25.

    Maglio PP, Matlock T (1999) The conceptual structure of information space. In: Munro AJ, Höök K, Benyon D (eds) Social navigation of information space. Springer, London, pp 155–173.

    Google Scholar 

  26. 26.

    Makri S, Blandford A (2012a) Coming across information serendipitously: part 2—a classification framework. J Doc 68(5):706–724

    Article  Google Scholar 

  27. 27.

    Makri S, Blandford A (2012b) Coming across information serendipitously—part 1: a process model. J Doc 68(5):684–705.

    Article  Google Scholar 

  28. 28.

    Marchionini G (2006) Exploratory search: from finding to understanding. Commun ACM 49(4):41–46.

    Article  Google Scholar 

  29. 29.

    Moro R, Bielikova M (2015) Navigation leads selection considering navigational value of keywords. In: WWW ’15 Companion: proceedings of the 24th international conference on world wide web companion, 18–22 May, 2015, Florence, Italy, IW3C2, Geneva, pp 79–80.

  30. 30.

    Moro R, Vangel M, Bielikova M (2016) Identification of navigation lead candidates using citation and co-citation analysis. In: Proceedings of the 42nd international conference on current trends in theory and practice of computer science—SOFSEM ’16, LNCS 9587, Springer, Berlin, pp 556–568

  31. 31.

    Návrat P (2012) Cognitive traveling in digital space: from keyword search through exploratory information seeking. Cent Eur J Comput Sci 2(3):170–182.

    Article  Google Scholar 

  32. 32.

    Niu X, Hemminger B (2015) Analyzing the Interaction Patterns in a Faceted Search Interface. J Assoc Inf Sci Technol 66(5):1030–1047.

    Article  Google Scholar 

  33. 33.

    Olston C, Chi EH (2003) ScentTrails: integrating browsing and searching on the web. ACM Trans Comput Hum Interact 10(3):177–197

    Article  Google Scholar 

  34. 34.

    Ozertem U, Chapelle O, Donmez P, Velipasaoglu E (2012) Learning to suggest: a machine learning framework for ranking query suggestions. In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval—SIGIR ’12, ACM Press, NY, USA, pp 25 –34.

  35. 35.

    Pääkkönen T, Kekäläinen J, Keskustalo H, Azzopardi L, Maxwell D, Järvelin K (2017) Validating simulated interaction for retrieval evaluation. Inf Retr J 20(4):338–362.

    Article  Google Scholar 

  36. 36.

    Pandit S, Olston C (2007) Navigation-aided retrieval. In: Proceedings of the 16th international conference on world wide web—WWW’07, ACM Press, NY, USA, pp 391–400.

  37. 37.

    Panigrahi D, Das Sarma A, Aggarwal G, Tomkins A (2012) Online selection of diverse results. In: Proceedings of the 5th ACM international conference on web search and data mining—WSDM ’12, ACM Press, NY, USA, pp 263–272.

  38. 38.

    Pirolli P, Card SK (1999) Information foraging. Psychol Rev 106:643–675

    Article  Google Scholar 

  39. 39.

    Ren P, Chen Z, Ma J, Wang S, Zhang Z, Ren Z, Ma T (2018) User session level diverse reranking of search results. Neurocomputing 274:66–79.

    Article  Google Scholar 

  40. 40.

    Russell DM, Stefik MJ, Pirolli P, Card SK (1993) The cost structure of sensemaking. In: Proceedings of the SIGCHI conference on Human factors in computing systems—CHI ’93, ACM Press, New York, USA, pp 269–276.

  41. 41.

    Sacco GM, Tzitzikas Y (2009) Dynamic taxonomies and faceted search: theory, practice, and experience, the information retrieval series, vol 25. Springer, Berlin.

    Google Scholar 

  42. 42.

    Santos RLT, Macdonald C, Ounis I (2012) Learning to rank query suggestions for adhoc and diversity search. Inf Retr 16(4):429–451.

    Article  Google Scholar 

  43. 43.

    Ševcech J, Bieliková M (2014) User’s interest detection through eye tracking for related documents retrieval. In: Proceedings of the 9th international workshop on semantic and social media adaptation and personalization—Sofsem ’14, IEEE, pp 9–13.

  44. 44.

    Ševcech J, Móro R, Holub M, Bieliková M (2014) User annotations as a context for related document search on the web and digital libraries. Informatica (Slovenia) 38(1):21

    Google Scholar 

  45. 45.

    Shah C, González-Ibáñez R (2011) Evaluating the synergic effect of collaboration in information seeking. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval—SIGIR’11, pp 913–922.

  46. 46.

    Shah C, Hendahewa C, González-Ibáñez R (2015) Two’s company, but three’s no crowd. Aslib J Inf Manag 67(6):636–662.

    Article  Google Scholar 

  47. 47.

    Singer P, Helic D, Taraghi B, Strohmaier M (2014) Detecting memory and structure in human navigation patterns using Markov chain models of varying order. PLoS ONE.

    Article  Google Scholar 

  48. 48.

    Singer P, Helic D, Hotho A, Strohmaier M (2017) A Bayesian method for comparing hypotheses about human trails. ACM Trans Web 11(3):1–29.

    Article  Google Scholar 

  49. 49.

    Skoutas D, Alrifai M (2011) Tag clouds revisited. In: Proceedings of the 20th ACM international conference on information and knowledge management—CIKM’11, ACM Press, NY, USA, pp 221–230.

  50. 50.

    Stolz A, Hepp M (2015) Adaptive faceted search for product comparison on the web of data. In: Proceedings of the 15th international conference on web engineering—ICWE’15, LNCS 9114, Springer, pp 420–429.

  51. 51.

    Sun H, Jiang C, Ding Z, Wang P, Zhou M (2016) Topic-oriented exploratory search based on an indexing network. IEEE Trans Syst Man Cybern Syst 46(2):234–247.

    Article  Google Scholar 

  52. 52.

    Tague-Sutcliffe J (1995) Measuring information: an information services perspective. Library and information science. Academic Press, Amsterdam

    Google Scholar 

  53. 53.

    Trattner C, Helic D, Singer P, Strohmaier M (2012) Exploring the differences and similarities between hierarchical decentralized search and human navigation in information networks. In: Proceedings of the 12th international conference on knowledge management and knowledge technologies—i-KNOW ’12, ACM Press, New York, USA, p 8.

  54. 54.

    Tvarožek M, Bieliková M (2010) Generating exploratory search interfaces for the semantic web. In: Human–computer interaction, IFIP advances in information and communication technology, vol 332, pp 175–186

  55. 55.

    Umemoto K, Yamamoto T, Tanaka K (2016) ScentBar: a query suggestion interface visualizing the amount of missed relevant information for intrinsically diverse search. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval—SIGIR ’16, ACM Press, New York, New York, USA, pp 405–414.

  56. 56.

    Verberne S, Sappelli M, Järvelin K, Kraaij W (2015) User simulations for interactive search: evaluating personalized query suggestion. In: Proceedings of the 37th European conference on IR research—ECIR 2015, LNCS 9022, Springer International Publishing, pp 678–690.

  57. 57.

    Vnenk L, Bielikova M (2014) Searcher’s activity in standalone and web applications as a source for search query expansion. In: Proceedings—2014 European network intelligence conference, ENIC 2014, pp 75–80.

  58. 58.

    White RW, Roth RA (2009) Exploratory search: beyond the query–response paradigm, vol 1. Morgan & Claypool, San Rafael.

    Google Scholar 

  59. 59.

    Wilson T (1999) Models in information behaviour research. J Doc 55(3):249–270

    Article  Google Scholar 

  60. 60.

    Yu HT, Jatowt A, Blanco R, Joho H, Jose JM, Chen L, Yuan F (2018) Revisiting the cluster-based paradigm for implicit search result diversification. Inf Process Manag 54(4):507–528.

    Article  Google Scholar 

  61. 61.

    Yuan X, White R (2012) Building the trail best traveled: effects of domain knowledge on web search trailblazing. In: Proceedings of the 2012 ACM annual conference on human factors in computing systems—CHI ’12, ACM Press, New York, USA, pp 1795–1804.

  62. 62.

    Yue Z, Han S, He D (2014) Modeling search processes using hidden states in collaborative exploratory web search. In: Proceedings of the 17th ACM conference on computer supported cooperative work and social computing—-CSCW’14, ACM Press, NY, USA, pp 820–830.

  63. 63.

    Zhang P, Soergel D, Klavans JL, Oard DW (2009) Extending sense-making models with ideas from cognition and learning theories. Proc Am Soc Inf Sci Technol 45(1):23–23.

    Article  Google Scholar 

Download references


This work was partially supported by the Scientific Grant Agency of the Slovak Republic, Grant Nos. VG 1/0667/18 and VG 1/0725/19, Slovak Research and Development Agency under the Contract No. APVV-15-0508, European Regional Development Fund, Grant Nos. ITMS 26240120039 and ITMS 26240220084. The authors also wish to thank our colleagues that contributed to the development of Annota and its dataset, which was used for evaluation of this work, namely Michal Holub, Jakub Sevcech, Martin Liptak, and Juraj Kostolansky.

Author information



Corresponding authors

Correspondence to Robert Moro or Maria Bielikova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moro, R., Bielikova, M. Navigation leads for exploratory search and navigation in digital libraries. Knowl Inf Syst 62, 2739–2764 (2020).

Download citation


  • Exploratory search
  • Navigation leads
  • Query refinement
  • Navigational value
  • Digital libraries
  • Annota