Skip to main content
Log in

Time series classification with feature covariance matrices

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In this work, a novel approach utilizing feature covariance matrices is proposed for time series classification. In order to adapt the feature covariance matrices into time series classification problem, a feature vector is defined for each point in a time series. The feature vector comprises local and global information such as value, derivative, rank, deviation from the mean, the time index of the point and cumulative sum up to the point. Extracted feature vectors for the time instances are concatenated to construct feature matrices for the overlapping subsequences. Covariances of the feature matrices are used to describe the subsequences. Our main purpose in this work is to introduce and evaluate the feature covariance representation for time series classification. Therefore, in classification stage, firstly, 1-NN classifier is utilized. After showing the effectiveness of the representation with 1-NN classifier, the experiments are repeated with SVM classifier. The other novelty in this work is that a novel distance measure is introduced for time series by feature covariance matrix representation. Conducted experiments on UCR time series datasets show that the proposed method mostly outperforms the well-known methods such as DTW, shapelet transform and other state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://www.uea.ac.uk/computing/machine-learning/shapelets/shapelet-results.

  2. https://github.com/jiapingz/TSClassification, lastly accessed in 04/09/2016.

References

  1. Libsvm library (2017). https://www.csie.ntu.edu.tw/~cjlin/libsvm/

  2. Time series classification website (2017). www.timeseriesclassification.com

  3. Ahmed N, Atiya AF, Gayar N, El-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econom Rev 29(5–6):594–621

    Article  MathSciNet  Google Scholar 

  4. Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56(2):411–421

    Article  Google Scholar 

  5. Ayadi ME, Kamel M, Karray F (2011) Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recogn 44(3):572–587

    Article  MATH  Google Scholar 

  6. Bagnall A, Lines J, Hills J, Bostrom A (2015) Time-series classification with cote: the collective of transformation-based ensembles. IEEE Trans Knowl Data Eng 27(9):2522–2535

    Article  Google Scholar 

  7. Bailly A, Malinowski S, Tavenard R, Guyet T, Chapel L (2015) Bag-of-temporal-sift-words for time series classification. In: ECML/PKDD workshop on advanced analytics and learning on temporal data

  8. Barachant A, Bonnet S, Congedo M, Jutten C (2013) Classification of covariance matrices using a riemannian-based kernel for bci applications. Neurocomputing 112:172–178

    Article  Google Scholar 

  9. Bay Herbert TT, Gool LV (2006) Surf: speeded up robust features. In: European conference on computer vision, pp 404–417

  10. Baydogan MG, Runger G, Tuv E (2013) A bag-of-features framework to classify time series. IEEE Trans Pattern Anal Mach Intell 35(11):2796–2802

    Article  Google Scholar 

  11. Chebbi Z, Moakher M (2012) Means of hermitian positive-definite matrices based on the log-determinant alpha-divergence function. Linear Algebra Appl 436(7):1872–1889

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. www.cs.ucr.edu/~eamonn/time_series_data/

  13. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. IEEE Conf Comput Vis Pattern Recogn 1:886–893

    Google Scholar 

  14. Deng H, Runger G, Tuv E, Vladimir M (2013) A time series forest for classification and feature extraction. Inf Sci 239:142–153

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdem E, Erdem A (2013) Visual saliency estimation by nonlinearly integrating features using region covariances. J Vis 13(4), article no. 11. doi:10.1167/13.4.11

  16. Ergezer H, Leblebicioğlu K (2016) Anomaly detection and activity perception using covariance descriptor for trajectories. In: European conference on computer vision, Springer, Berlin, pp 728–742

  17. Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv (CSUR) 45(1), article no. 12

  18. Freifeld O (2014) Statistics on manifolds with applications to modeling shape deformations. Ph.D. Thesis, Brown University

  19. Förstner W, Moonen B (2003) A metric for covariance matrices. Geodesy-The Challenge of the 3rd Millennium. Springer, Berlin

    Google Scholar 

  20. Fu Z, Lu G, Ting K, Zhang D (2011) Music classification via the bag-of features approach. Pattern Recogn Lett 32(14):1768–1777

    Article  Google Scholar 

  21. Fulcher BD, Jones NS (2014) Highly comparative feature-based time-series classification. IEEE Trans Knowl Data Eng 26(12):3026–3037

    Article  Google Scholar 

  22. Guo K, Ishwar P, Konrad J (2013) Action recognition from video using feature covariance matrices. IEEE Trans Image Process 22(6):2479–2494

    Article  MathSciNet  MATH  Google Scholar 

  23. Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of time series by shapelet transformation. Data Min Knowl Disc 28(4):851–881

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeong Y, Jeong M, Omitaomu O (2011) Weighted dynamic time warping for time series classification. Pattern Recogn 44(9):2231–2240

    Article  Google Scholar 

  25. Karlsson I, Papapetrou P, Boström H (2016) Generalized random shapelet forests. Data Min Knowl Disc 30(5):1053–1085

    Article  MathSciNet  Google Scholar 

  26. Kate RJ (2016) Using dynamic time warping distances as features for improved time series classification. Data Min Knowl Disc 30(2):283–312

    Article  MathSciNet  Google Scholar 

  27. Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: Proceedings of the 2001 SIAM international conference on data mining

  28. Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2–3):107–123

    Article  Google Scholar 

  29. Lee JM (2006) Riemannian manifolds: an introduction to curvature, vol 176. Springer, Berlin

    Google Scholar 

  30. Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing sax: a novel symbolic representation of time series. Data Min Knowl Disc 15(2):107–144

    Article  MathSciNet  Google Scholar 

  31. Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data Min Knowl Disc 29:565–592

    Article  MathSciNet  Google Scholar 

  32. Lowe D (1999) Object recognition from local scale-invariant features. Proc Seventh IEEE Int Conf Comput Vis 2:1150–1157

    Article  Google Scholar 

  33. Mikolajczyk K et al (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  34. Mohan A, Papageorgiou C, Poggio T (2001) Example-based object detection in images by components. IEEE Trans Pattern Anal Mach Intell 23(4):349–361

    Article  Google Scholar 

  35. Mueen A, Keogh E, Youngin N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of 17th ACM SIGKDD internatinal conference knowledge discovery data mining, pp 1154–1162

  36. Pongpaichet S, Tang M, Jalali L, Jain R (2016) Using photos as micro-reports of events. In: In Proceedings of the 2016 ACM on international conference on multimedia retrieval, pp 87–94. ACM

  37. Porikli F, Tuzel O, Meer P (2006) Covariance tracking using model update based on lie algebra. In: CVPR, pp 728–735

  38. Ratanamahatana C, Keogh E (2005) Three myths about dynamic time warping data mining. In: In Proceedings of SIAM international conference on data mining (SDM’05), pp 506–510

  39. Ratanamahatana CA, Keogh E (2004) Making time-series classification more accurate using learned constraints. In: Proceedings of SIAM international conference on data mining (SDM04), pp 11–22

  40. Ratanamahatana CA, Lin J, Gunopulos D, Keogh E, Vlachos M, Das G (2005) Mining time series data. In: Data mining and knowledge discovery handbook 1069–1103, Springer, US

  41. Sadatnejad K, Ghidary SS (2016) Kernel learning over the manifold of symmetric positive definite matrices for dimensionality reduction in a bci application. Neurocomputing 179:152–160

    Article  Google Scholar 

  42. Tang M, Agrawal P, Nie F, Pongpaichet S, Jain R (2016) A graph based multimodal geospatial interpolation framework. In: In 2016 IEEE international conference on multimedia and expo (ICME), pp 1–6

  43. Tang M, Nie F, Pongpaichet S, Jain R (2017) From photo streams to evolving situations. arXiv preprint arXiv:1702.05878

  44. Tang M, Wu X, Agrawal P, Pongpaichet S, Jain R (2017) Integration of diverse data sources for spatial PM2. 5 data interpolation. IEEE Trans Multimedia 19(2):408–417.

  45. Tuzel O, Porikli F, Meer P (2006) Region covariance: a fast descriptor for detection and classification. In: European conference on computer vision. Springer, Berlin, pp 589–600

  46. Tuzel O, Porikli F, Meer P (2008) Pedestrian detection via classification on riemannian manifolds. IEEE Trans Pattern Anal Mach Intell 30(10):1713–1727

    Article  Google Scholar 

  47. Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation methods and distance measures for time series data. Data Min Knowl Disc 26(2):275–309

    Article  MathSciNet  Google Scholar 

  48. Ye L, Keogh E (2009) Time series shapelets: A new primitive for data mining. In: Proceedings of 15th ACM SIGKDD international conference on knowledge discovery data mining, pp 947–956

  49. Zhang Q, Goldman S, Yu W, Fritts J (2002) Content-based image retrieval using multiple-instance learning. ICML 2:682–689

    Google Scholar 

  50. Zhao J, Itti L (2016) Classifying time series using local descriptors with hybrid sampling. IEEE Trans Knowl Data Eng 28(3):623–637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Ergezer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergezer, H., Leblebicioğlu, K. Time series classification with feature covariance matrices. Knowl Inf Syst 55, 695–718 (2018). https://doi.org/10.1007/s10115-017-1098-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-017-1098-1

Keywords

Navigation