Skip to main content

How you move reveals who you are: understanding human behavior by analyzing trajectory data


The widespread use of mobile devices is producing a huge amount of trajectory data, making the discovery of movement patterns possible, which are crucial for understanding human behavior. Significant advances have been made with regard to knowledge discovery, but the process now needs to be extended bearing in mind the emerging field of behavior informatics. This paper describes the formalization of a semantic-enriched KDD process for supporting meaningful pattern interpretations of human behavior. Our approach is based on the integration of inductive reasoning (movement pattern discovery) and deductive reasoning (human behavior inference). We describe the implemented Athena system, which supports such a process, along with the experimental results on two different application domains related to traffic and recreation management.

This is a preview of subscription content, access via your institution.


  1. 1

    Agrawal R, Gunopulos D, Leymann F (1998) Mining Process Models from Workflow Logs. In: Ramos I, Alonso G, Schek H-J, Saltor F (eds) Advances in database technology—EDBT’98: sixth international conference on extending database technology. Springer, Valencia, pp 469–483

    Google Scholar 

  2. 2

    Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Buneman P, Jajodia S (eds) Proceedings of the 1993 ACM SIGMOD international conference on management of data. ACM, Washington, pp 207–216

    Chapter  Google Scholar 

  3. 3

    Ankerst M, Breunig MM, Kriegel H et al (1999) OPTICS: ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S (eds) SIGMOD 1999, proceedings ACM SIGMOD international conference on management of data. ACM Press, Philadelphia, pp 49–60

    Chapter  Google Scholar 

  4. 4

    Antunes C (2007) Onto4AR: a framework for mining association rules. In: Nijssen S, De Raedt L (eds) International workshop on constraint-based mining and learning (CMILE—ECML/PKDD 2007). Warsaw, September 2007

  5. 5

    Baader, F, Calvanese, D, McGuinness, DL, Nardi, D, Patel-Schneider, PF (eds) (2003) The description logic handbook: theory, implementation, applications. Cambridge University Press, Cambridge

    Google Scholar 

  6. 6

    Baglioni M, de Macedo J, Renso C et al (2008) An ontology-based approach for the semantic modelling and reasoning on trajectories. In: Il-Yeol Sang et al (eds) Advances in conceptual modeling-challenges and opportunities ER 2008 workshops proceedings (SeCoGIS 2008). Springer, Barcelona, Spain, October 20–23, pp 344–353

  7. 7

    Baglioni M, de Macêdo JAF, Renso C et al (2009) Towards Semantic Interpretation of Movement Behavior. In: Sester M, Bernard L, Paelke V (eds) Advances in GIScience, proceedings of the 12th AGILE conference. Springer, Hannover, Germany, pp 271–288

  8. 8

    Bellandi A, Furletti B, Grossi V et al (2007) Ontology-driven association rules extraction: a case of study. In: Bouquet P, Euzenat J, Ghidini C, McGuinness D, Serafini L, Shvaiko P, Wache H (eds) Proceedings of the international workshop on context and ontologies representation and reasoning (C&O:RR) collocated with the 6th international and interdisciplinary conference on modelling and using context (CONTEXT-2007). Roskilde, Denmark, August 21st, 2007

  9. 9

    Bogorny V, Kuijper B, Alvaresz LO (2009) ST-DMQL: a semantic trajectory data mining query language. IJGIS 23(10): 1245–1276

    Google Scholar 

  10. 10

    Bogorny V, Wachowicz M (2009) A framework for context-aware trajectory. In: Cao L, Yu PS, Zhang C, Zhang H (eds) Data mining for business applications. Springer, USA, pp 225–239

    Chapter  Google Scholar 

  11. 11

    Cao L, Huang JZ, Bailey J et al. (eds) (2011) New frontiers in applied data mining PAKDD 2011 international workshops (behavior informatics 2011 (BI2011) in conjunction with the 15th pacific-asia conference on knowledge discovery and data mining (PAKDD2011)). Springer, LNAI 7104

  12. 12

    Cao, L, Yu, PS (eds) (2012) Behavior computing modeling, analysis, mining and decision. Springer, Berlin

    Google Scholar 

  13. 13

    Cao, L, Yu, PS, Zhang, C (eds) et al (2009) Data mining for business applications. Springer, Berlin

    Google Scholar 

  14. 14

    Cao L, Yu PS, Zhang C et al (2010) Domain driven data mining. Springer Hardcover, Berlin

    Book  MATH  Google Scholar 

  15. 15

    Cavus O, Aksoy S (2008) Semantic Scene Classification for Image Annotation and Retrieval. In: da Vitoria Lobo N, Roli F, Kwok JT, Anagnostopoulos GC, Loog M (eds) Proceeding of the 2008 joint IAPR international workshop on structural, syntactic, and statistical pattern recognition, (also in Lecture Notes in Computer Science, volume 5342). Springer, Orlando, pp 402–410

  16. 16

    Chen K, Liu L (2010) Geometric data perturbation for privacy preserving outsourced data mining. Knowl Inf Syst 29:3: 657–695

    Google Scholar 

  17. 17

    Cui J, Liu H, He J et al (2011) TagClus: a random walk-based method for tag clustering. Knowl Inf Syst 27:2: 193–225

    Article  Google Scholar 

  18. 18

    Dodge S, Weibel R, Lautenschultz A-K (2008) Towards a taxonomy of movement patterns. Inf Visalizat 7(3–4): 240–252

    Article  Google Scholar 

  19. 19

    Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery: an overview. In: Fayyad UM, Piatesky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. AAAI/MIT Press, Cambridge, pp 1–34

    Google Scholar 

  20. 20

    Feng S, Wang D, Yu G et al (2011) Extracting common emotions from blogs based on fine-grained sentiment clustering. Knowl Inf Syst 27(2): 281–302

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Giannotti F, Nanni M, Pinelli F et al (2007) Trajectory pattern mining. In: Berkhin P, Caruano R, Wu X (eds) Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM 2007, San Jose California, pp 330–339

  22. 22

    Giannotti F, Nanni M, Pedreschi D et al (2011) Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB Journal Special issue on Data Management for Mobile Services

  23. 23

    Giannotti, F, Pedreschi, D (eds) (2008) Mobility, data mining, and privacy: geographic knowledge discovery. Springer, Berlin

    Google Scholar 

  24. 24

    Gottgtroy P, Modaini R, Kasabov N et al (2003) Building evolving ontology maps for data mining and knowledge discovery in biomedical informatics. In: Proceedings of the third Brazilian symposium on mathematical and computational biology (BIOMATIII), Rio de Janeiro, Brazil, vol 1, pp 309–328

  25. 25

    Gruber TR (2008) Ontology. In: Ling L, Tamer Özsu M (eds) Entry in the encyclopedia of database systems. Springer, Berlin

    Google Scholar 

  26. 26

    Guarino N, Oberle D, Staab S (2009) What is an ontology?. In: Staab S, Studer R (eds) Handbook on ontologies. Springer, Berlin, pp 1–17

    Chapter  Google Scholar 

  27. 27

    Güting R, Schneider M (2005) Moving objects databases. Morgan Kaufmann, Los Altos

    Google Scholar 

  28. 28

    Hägerstrand T (1970) What about people in regional science?. Pap Reg Sci 24(1): 6–21

    Article  Google Scholar 

  29. 29

    Laube P, Imfeld S (2002) Analyzing relative motion within groups of trackable moving point objects. In: Egenhofer MJ, Mark DM (eds) Proceedings of the second international conference on geographic information science LNCS 2478. Springer, Boulder, pp 132–144

  30. 30

    Laube P, van Kreveld M, Imfeld S (2004) Finding REMO—detecting relative motion patterns in geospatial lifelines. In: Fisher P (ed) Developments in spatial data handling, 11th international symposium on spatial data handling. Springer, Berlin, pp 201–214

  31. 31

    Kietz J, Serban F, Bernstein A et al (2010) Data Mining Workflow Templates for Intelligent Discovery Assistance and Auto-Experimentation. In: Hilario M, Lavrac N, Kok JN (eds) Proceedings of the ECML/PKDD10 workshop on third generation data mining: towards service-oriented knowledge discovery (SoKD10). Barcelona, Spain, pp 1–12

  32. 32

    van Marwijk R, Pitt DG (2008) Where Dutch recreationists walk: Path design, physical features and walker usage. In: Raschi A, Tamperi S (eds) Proceedings fourth international conference on monitoring and management of visitor flows in recreational and protected areas. Management for Protection and Sustainable Development, Montecatini Terme, Italy, pp 428–432

  33. 33

    Monreale A, Trasarti R, Renso C et al (2011) C-safety: a framework for the anonymization of semantic trajectories. Trans Data Privacy 4:2: 73–101

    MathSciNet  Google Scholar 

  34. 34

    Nanni M, Kuijpers B, Korner C et al (2008) Spatiotemporal data mining. In: Giannotti F, Pedreschi D (eds) Mobility, data mining, and privacy: geographic knowledge discovery. Springer, Berlin

    Google Scholar 

  35. 35

    Nanni M, Trasarti R (2009) K-BestMatch reconstruction and comparison of trajectory data. In: Saygin Y, Yu JX, Kargupta H, Wang W et al (eds) ICDM workshops 2009 international workshop on spatio and spatio temporal data mining in cooperation with IEEE—ICDM 2009. IEEE Computer Society 2009, Miami, pp 610–615

  36. 36

    Nanni M, Trasarti R, Renso C et al (2010) Advanced knowledge discovery on movement data with the GeoPKDD system. In: Manolescu I, Spaccapietra S, Teubner J, Kitsuregawa M, Léger A, Naumann F, Ailamaki A, Ozcan F (eds) EDBT 2010. ACM, Lausanne, pp 693–696

    Google Scholar 

  37. 37

    Nigro, HO, Gonzalez Cisaro, SE, Xodo, DH (eds) (2008) Data mining with ontologies: implementations, findings and frameworks. IGI Global, Hershey

    Google Scholar 

  38. 38

    Ortale R, Ritacco E, Pelekis N et al (2008) The DAEDALUS framework: progressive querying and mining of movement data. In: Aref WG, Mokbel MF, Schneider M (eds) Proceedings of the 16th ACM SIGSPATIAL international symposium on advances in geographic information systems. ACM-GIS, Irvine, pp 52:1–52:4

  39. 39

    Pelekis N, Kopanakis I, Kotsifakos E et al (2011) Clustering uncertain trajectories. Knowl Inf Syst 28(1): 117–147

    Article  Google Scholar 

  40. 40

    Pelekis N, Theodoridis Y (2006) Boosting location-based services with a moving object database engine. In: Chrysanthis PK, Jensen CS, Kumar V, Labrinidis A (eds) Proceedings of the 5th ACM international workshop on data engineering for wireless and mobile access. ACM, Chicago, pp 3–10

  41. 41

    Reeve L, Han H (2005) Survey of semantic annotation platforms. In: Haddad H, Liebrock LM, Omicini A, Wainwright RL (eds) Proceedings of the 2005 ACM symposium on applied computing, SAC ’05. ACM, New York, pp 1634–1638

  42. 42

    Rinzivillo S, Pedreschi D, Nanni M et al (2008) Visually-driven analysis of movement data by progressive clustering. Inf Visual 7(3/4): 225–239

    Article  Google Scholar 

  43. 43

    Romei A, Turini F (2011) Inductive database languages: requirements and examples. Knowl Inf Syst 26:3: 351–384

    Article  Google Scholar 

  44. 44

    Song C, Qu Z, Blumm N et al (2010) Limits of predictability in human mobility. Science 19 327(5968): 1018–1021

    MathSciNet  Article  MATH  Google Scholar 

  45. 45

    Spaccapietra S, Parent C, Damiani ML et al (2008) A conceptual view on trajectories. Data Knowl Eng J 65:1: 126–146

    Article  Google Scholar 

  46. 46

    Spinsanti L, Celli F, Renso C (2010) Where you stop is who you are: understanding peoples’ activities. In: Gottfried B, Aghajan H (eds) Proceedings of the 5th workshop on behaviour monitoring and interpretation—user modelling. Karlsruhe, Germany

  47. 47

    Trasarti R, Pinelli F, Nanni M et al (2011) Mining mobility user profiles for car pooling. In: Aptè C, Ghosh J, Smyth P (eds) Proceedings of the 17th ACM SIGKDD conference on knowledge discovery and data mining. ACM, San Diego, pp 1190–1198

    Chapter  Google Scholar 

  48. 48

    Uren V, Cimiano P, Iria J et al (2006) Semantic annotation for knowledge management: requirements and a survey of the state of the art. J Web Semant 4(1): 14–28

    Article  Google Scholar 

  49. 49

    Valente A, Breuker J (1996) Towards principled core ontologies. In: Gaines BR, Mussen M (eds) Proceedings of the KAW-96. Banff

  50. 50

    Yan Z (2009) Towards semantic trajectory data analysis: a conceptual and computational approach. In: Gigaux P, Senellrt P (eds) Proceedings of the VLDB 2009 PhD workshop co-located with the 35th international conference on very large data bases (VLDB 2009). VLDB Endowment, Lyone, France

  51. 51

    Yan Z, Parent C, Spaccapietra S et al (2010) A hybrid model and computing platform for spatio-semantic trajectories. In: Aroyo L, Antoniou G, Hyvönen E, Teije A, Stuckenschmidt H, Cabral L, Tudorache T (eds) The semantic web: research and applications. Springer, Berlin, pp 60–75

    Chapter  Google Scholar 

  52. 52

    Wachowicz M, Ong R, Renso C et al (2011) Finding moving flock patterns among pedestrians through spatio-temporal coherence. Int J GIS 25(11): 1849–1864

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chiara Renso.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Renso, C., Baglioni, M., de Macedo, J.A.F. et al. How you move reveals who you are: understanding human behavior by analyzing trajectory data. Knowl Inf Syst 37, 331–362 (2013).

Download citation


  • Behavior inference
  • Trajectory data mining
  • GPS data
  • Ontologies
  • Pattern classification