Dirac Cohomology and Character Lifting


The endoscopic transfer factor is expressed as difference of characters for the even and odd parts of the spin modules, or Dirac index of the trivial representation. The lifting of tempered characters in terms of index of Dirac cohomology is calculated explicitly.

This is a preview of subscription content, access via your institution.


  1. [1]

    Adams, J.: Lifting of characters on orthogonal and metaplectic groups. Duke Math. J., 92, 129–178 (1998)

    MathSciNet  Article  Google Scholar 

  2. [2]

    Adams, J., Johnson, J.: Endoscopic groups and packets of non-tempered representations. Compos. Math., 64, 271–309 (1987)

    MATH  Google Scholar 

  3. [3]

    Arthur, J.: On elliptic tempered characters. Acta Math., 171, 73–138 (1993)

    MathSciNet  Article  Google Scholar 

  4. [4]

    Arthur, J.: On the Fourier transforms of weighted orbital integrals. J. Reine Angew. Math., 452, 163–217 (1994)

    MathSciNet  MATH  Google Scholar 

  5. [5]

    Arthur, J.: Problems for real groups, In: Representation Theory of Real Reductive Lie groups. Contemporary Mathematics, Vol. 472, 39–62, Amer. Math. Soc., 2008

  6. [6]

    Atiyah, M., Schmid, W.: A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 42, 1–62 (1977)

    MathSciNet  Article  Google Scholar 

  7. [7]

    Atiyah, M., Schmid, W.: Erratum: A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 54, 189–192 (1979)

    MathSciNet  Article  Google Scholar 

  8. [8]

    Dong, C. P., Huang, J. S.: Dirac cohomology of cohomologically induced modules. Amer. J. Math., 137, 37–60 (2015)

    MathSciNet  Article  Google Scholar 

  9. [9]

    Harish-Chandra: The characters of semisimple Lie groups. Trans. Amer. Math. Soc., 83, 98–163 (1956)

    MathSciNet  Article  Google Scholar 

  10. [10]

    Harish-Chandra: Harmonic analysis on real reductive groups I. The theory of the constant term. J. Funct. Anal., 19, 104–204 (1975)

    MathSciNet  Article  Google Scholar 

  11. [11]

    Harish-Chandra, Discrete series for semisimple Lie groups, I. Acta Math., 113, 242–318 (1965)

    Article  Google Scholar 

  12. [11a]

    Harish-Chandra, Discrete series for semisimple Lie groups, II. Acta Math., 116, 1–111 (1966)

    MathSciNet  Article  Google Scholar 

  13. [12]

    Harish-Chandra: Supertempered distributions on real reductive groups, In: Studies in Applied Mathematics. (Advances in Mathematics Supplementary Studies), Vol. 8, 139–153, 1983 (It is contained in Harish-Chandra’s collected Collected Papers, Volumed IV, 447–461)

  14. [13]

    Howard, T.: Lifting of characters on p-adic orthogonal and metaplectic groups. Compos. Math., 146, 795–810 (2010)

    MathSciNet  Article  Google Scholar 

  15. [14]

    Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc., 313(2), 539–570 (1989)

    MathSciNet  Article  Google Scholar 

  16. [15]

    Huang, J. S.: Dirac cohomology, elliptic representations and endoscopy, Representation Theory of Reductive Groups, in Honor of 60th Birthday of David Vogan, Progress in Mathematics, Vol. 321, Birkhauser, 2015, 241–276

  17. [16]

    Huang, J. S.: Symplectic Dirac cohomology and lifting of characters to metaplectic groups, arXiv:2006.00157

  18. [17]

    Huang, J. S., Kang, Y. F., Pandžić, P.: Dirac cohomology of some Harish-Chandra modules. Transform. Groups, 14(1), 163–173 (2009)

    MathSciNet  Article  Google Scholar 

  19. [18]

    Huang, J. S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc., 15, 185–202 (2002)

    MathSciNet  Article  Google Scholar 

  20. [19]

    Huang, J. S., Pandžić, P.: Dirac Operator in Representation Theory, Math. Theory Appl., Birkhauser, 2006

  21. [20]

    Huang, J. S., Pandžić, P.: Dirac cohomology for Lie superalgebras. Transform. Groups, 10, 201–209 (2005)

    MathSciNet  Article  Google Scholar 

  22. [21]

    Huang, J. S., Pandžić, P., Vogan, D. A.: On classifying unitary representations by their Dirac cohomology. Science China Mathematics, 60, 1937–1962 (2017)

    MathSciNet  Article  Google Scholar 

  23. [22]

    Huang, J. S., Pandžić, P., Zhu, F. H.: Dirac cohomology, X-characters and branching laws. Amer. J. Math., 135, 1253–1269 (2013)

    MathSciNet  Article  Google Scholar 

  24. [23]

    Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J., 100, 447–501 (1999)

    MathSciNet  Article  Google Scholar 

  25. [24]

    Kostant, B.: Dirac cohomology for the cubic Dirac operator, In: Studies in Memory of Issai Schur. (Progress in Math.), 210, 69–93 (2003)

  26. [25]

    Labesse, J. P.: Pseudo-coefficients très cuspidaux et K-theorie. Math. Ann., 291, 607–616 (1991)

    MathSciNet  Article  Google Scholar 

  27. [26]

    Labesse, J. P.: Introduction to endoscopy, In Representation Theory of Real Reductive Lie Groups. Contemporary Mathematics, 472, 197–213 (2008)

    Google Scholar 

  28. [27]

    Langlands, R. P.: On the classification of irreducible representations of real algebraic groups. Math. Surveys and Monographs, 31, 101–170 (1989)

    MathSciNet  Article  Google Scholar 

  29. [28]

    Langlands, R. P., Shelstad, D.: On the definition of transfer factors. Math. Ann., 278, 219–271 (1987)

    MathSciNet  Article  Google Scholar 

  30. [29]

    Li, W. W.: Spectral transfer for metaplectic groups. I. Local character relations. J. Inst. Math. Jussieu, 18, 25–123 (2019)

    MathSciNet  Article  Google Scholar 

  31. [30]

    Parthasarathy, R.: Dirac operator and the discrete series. Ann. of Math., 96, 1–30 (1972)

    MathSciNet  Article  Google Scholar 

  32. [31]

    Renard, D.: Endoscopy for Mp(2n, ℝ). Amer. J. Math., 121, 1215–1243 (1999)

    MathSciNet  Article  Google Scholar 

  33. [32]

    Salamanca-Riba, S. A.: On the unitary dual of real reductive Lie groups and the Aq(λ) modules: the strongly regular case. Duke Math. J., 96, 521–546 (1998)

    MathSciNet  MATH  Google Scholar 

  34. [33]

    Shelstad, D.: Notes on L-indistinguishability (based on a lecture by R. P. Langlands), In: Automorphic Forms, Representations and L-functions. Proc. Sympos. Pure Math., Vol. 33, Part 2, Amer. Math. Soc., 1979, 193–204

  35. [34]

    Shelstad, D.: Characters and inner forms of a quasi-split group over R. Compositio Math., 39, 11–45 (1979)

    MathSciNet  MATH  Google Scholar 

  36. [35]

    Shelstad, D.: Orbital integrals and a family of groups attached to a real reductive group. Ann. Sci. Ecole Norm. Sup., 12, 1–31 (1979)

    MathSciNet  Article  Google Scholar 

  37. [36]

    Shelstad, D.: Embeddings of L-groups. Canad. J. Math., 33, 513–558 (1981)

    MathSciNet  Article  Google Scholar 

  38. [37]

    Shelstad, D.: L-indistinguishability for real groups. Math. Ann., 259, 385–430 (1982)

    MathSciNet  Article  Google Scholar 

  39. [38]

    Vogan, Jr., D. A.: Irreducible characters of semisimple Lie groups II. The Kazhdan-Lusztig conjectures. Duke Math. J., 46, 805–859 (1979)

    MathSciNet  MATH  Google Scholar 

  40. [39]

    Vogan, Jr., D. A.: Representations of Real Reductive Lie Groups, Progress in Math. Vol. 15, Birkhauser, 1981

  41. [40]

    Vogan, Jr., D. A.: Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, Fall, 1997

  42. [41]

    Vogan, Jr., D. A., Zuckerman, G. J.: Unitary representations with non-zero cohomology. Compos. Math., 53, 51–90 (1984)

    MATH  Google Scholar 

  43. [42]

    Wolf, J. A.: Partially harmonic spinors and representations of reductive Lie groups. J. Funct. Anal., 15, 117–154 (1974)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jing Song Huang.

Additional information

Supported by grants (Grant No. 16303218) from Research Grant Council of HKSAR

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J.S. Dirac Cohomology and Character Lifting. Acta. Math. Sin.-English Ser. 37, 525–537 (2021). https://doi.org/10.1007/s10114-021-9366-0

Download citation


  • Dirac cohomology
  • Dirac series
  • cubic Dirac operators
  • endoscopic transfer
  • character lifting

MR(2010) Subject Classification

  • 22E47
  • 22E46