Abstract
We study the adjunction property of the Jacquet-Emerton functor in certain neighborhoods of critical points in the eigencurve. As an application, we construct two-variable p-adic L-functions around critical points via Emerton’s representation theoretic approach.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
- [1]
Bellaïche, J.: Critical p-adic L-functions. Inventiones Mathematicae, 189(1), 1–60 (2012)
- [2]
Bellaïche, J., Chenevier, G.: Families of Galois representations and Selmer groups. Asterisqué, 324, 1–314 (2009)
- [3]
Bergdall, J.: Ordinary modular forms and companion points on the eigencurve. Journal of Number Theory, 134, 226–239 (2014)
- [4]
[4] Breuil, C: Remarks on some locally Qp-analytic representations of GL2(F) in the crystalline case. In: Non-abelian Fundamental Groups and Iwasawa Theory, London Math. Soc. Lecture Note Ser., Vol. 393, Cambridge Univ. Press, 212–238, 2010
- [5]
[5] Breuil, C: Correspondance de langlands p-adique, compatibilité local-global et applications. Séminaire Bourbaki, 1031, 119–147 (2011)
- [6]
Breuil, C., Emerton, M.: Représentations p-adiques ordinaires de GL2(Qp) et compatibilite local-global. Asterisque, 331, 255–315 (2010)
- [7]
Breuil, C., Hellmann, E., Schraen, B.: Smoothness and classicality on eigenvarieties. Inventiones mathematicae, 209(1), 197–274 (2017)
- [8]
Breuil, C., Hellmann, E., Schraen, B.: Une interpretation modulaire de la variete trianguline. Mathematis- che Annalen, 367(3–4), 1587–1645 (2017)
- [9]
Chenevier, G.: Familles p-adiques de formes automorphes pour GLn. J. Reine Angew. Math, 570, 143–217 (2004)
- [10]
Chenevier, G.: Une correspondance de Jacquet-Langlands p-adique. Duke Mathematical Journal, 126(1), 161–194 (2005)
- [11]
Chenevier, G.: On the infinite fern of Galois representations of unitary type. Ann. Sci. Éc. Norm. Supér. (4), 44(6), 963–1019 (2011)
- [12]
Colmez, P.: Representations triangulines de dimension 2. Asterisque, 319, 213–258 (2008)
- [13]
Ding, Y. W.: L-invariants and local-global compatibility for the group GL2/F. Forum of Mathematics, Sigma, 4, e13, 49 pp., (2016)
- [14]
Ding, Y. W.: Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global. Memoires de la SMF, No. 155, 2017
- [15]
Emerton, M.: p-adic L-functions and unitary completions of representations of p-adic reductive groups. Duke Mathematical Journal, 130, 353–392 (2005)
- [16]
Emerton, M.: Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties. Annales Scientifiques de l’Ecole Normale Superieure, 39(5), 775–839 (2006)
- [17]
Emerton, M.: On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Inventiones Mathematicae, 164, 1–84 (2006)
- [18]
Emerton, M.: Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction. to appear in J. Institut Math. Jussieu, 2007
- [19]
Emerton, M.: Locally analytic representation theory of p-adic reductive groups: A summary of some recent developments. In: L-Functions and Galois Representations, London Mathematical Society Lecture Note Series, Vol. 320, 407–437, 2007
- [20]
Emerton, M.: Local-global compatibility in the p-adic Langlands programme for GL2/Q. preprint, 2011
- [21]
Emerton, M.: Locally analytic vectors in representations of locally p-adic analytic groups. Memoirs of the Amer. Math. Soc, 248(1175), (2017)
- [22]
Grothendieck, A., Dieudonne, J.: Éléments de gómétrie algébrique iv: étude locale des schemas et des morphismes de schemas (premiere partie). Pub. Math. I.H.É.S., 20, 5–259 (1964)
- [23]
Kedlaya, K., Pottharst, J., Xiao, L.: Cohomology of arithmetic families of φ, Г)-modules. Journal of the American Mathematical Society, 27(4), 1043–1115 (2014)
- [24]
Kisin, M.: Overconvergent modular forms and the Fontaine-Mazur conjecture. Inventiones Mathematicae, 153(2), 373–454 (2003)
- [25]
Lei, A., Loeffler, D., Zerbes, S. L.: Critical slope p-adic L-functions of CM modular forms. Israel Journal of Mathematics, 198(1), 261–282 (2013)
- [26]
Liu, R.: Triangulation of refined families. Commentarii Mathematici Helvetici, 90(4), 831–904 (2015)
- [27]
Mazur, B., Tate, J., Teitelbaum, J.: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Inventiones Mathematicae, 84(1), 1–48 (1986)
- [28]
Pollack, R., Stevens, G.: Critical slope p-adic L-functions. Journal of the London Mathematical Society, 87(2), 428–452 (2012)
Acknowledgements
I want to thank Matthew Emerton for suggesting the problem of extending his adjunction formula to critical points on the eigencurve, that led to the note. I thank Daniel Barrera Salazar, John Bergdall, Xin Wan, Shanwen Wang for helpful discussions or remarks. I also thank the anonymous referee for the reading and helpful suggestions.
Author information
Affiliations
Corresponding author
Additional information
Supported by EPSRC (Grant No. EP/L025485/1) and (Grant No. 7101500268) from Peking University
Rights and permissions
About this article
Cite this article
Ding, Y.W. A Note on Critical p-adic L-functions. Acta. Math. Sin.-English Ser. 37, 121–141 (2021). https://doi.org/10.1007/s10114-020-8396-3
Received:
Accepted:
Published:
Issue Date:
Keywords
- p-adic L-function
- eigencurve
- critical p-stabilization
- Jacquet-Emerton functor
MR(2010) Subject Classification
- 11F67
- 11S80