Minimum Principle for Plurisubharmonic Functions and Related Topics



This is a survey about some recent developments of the minimum principle for plurisubharmonic functions and related topics.


Minimum principle plurisubharmonic functions Stein manifolds geometric invariant theory group actions holomorphic vector bundles 

MR(2010) Subject Classification

32M05 32U05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berman, R. J., Berndtsson, B.: The volume of Kähler–Einstein Fano varieties and convex bodies. J. Reine Angew. Math., 723, 127–152 (2017)MathSciNetMATHGoogle Scholar
  2. [2]
    Berndtsson, B.: Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions. Math. Ann., 312, 785–792 (1998) geom 81.3, pp. 457–482 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. of Math. (2), 169(2), 531–560 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Bröcker, T., Dieck, T. T.: Representations of Compact Lie Groups, GTM98, Springer-Verlag, 1985CrossRefMATHGoogle Scholar
  5. [5]
    Burns, D., Halverscheid, S., Hind, R.: The Geometry of Grauert Tubes and Complexification of Symmetric Spaces. Duke Math. J., 118, 465–491 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Chafi, B.: Principe du Minimum pour les fonctions plurisousharmoniques. Thèse de 3e cycle, Université de Lille 1, (juin 1983)Google Scholar
  7. [7]
    Demailly, J. P.: Complex Analytic and Differential Geometry, e-book, available at: http://www-fourier.ujfgrenoble. fr/demailly/documents.htmlGoogle Scholar
  8. [8]
    Deng, F., Rong, F.: On biholomorphisms between bounded quasi-Reinhardt domains. Annali di Matematica Pura ed Applicata, 195, 835–843 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Deng, F., Zhang, H., Zhou, X.: Positivity of direct images of positively curved volume forms. Math. Z., 278, 347–362 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Deng, F., Zhang, H., Zhou, X.: Positivity of character subbundles and minimumprinciple for noncompact group actions. Math. Z., 286, 431–442 (2017)MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Fels, G., Huckleberry, A., Wolf, J. A.: Cycle Spaces of Flag Domains, Progressin Math. 245, Birkhäuser, Boston, 2006MATHGoogle Scholar
  12. [12]
    Guan, Q., Zhou, X.: A solution of an L2-extension problem with an optimal estimate and applications. Ann. of Math. (2), 181(3), 1139–1208 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Heinzner, P.: Geometric invariant theory on Stein spaces. Math. Ann., 281, 631–662 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Heinzner, P.: The minimum principle from a Hamiltonian point of view. Doc. Math. J. DMV, 3, 1–14 (1998)MathSciNetMATHGoogle Scholar
  15. [15]
    Hitchin, N. J., Karlhede, A., Lindström, U., et al.: HyperKähler metrics and supersymmetry. Commun. Math. Phys., 108, 535–589 (1987)CrossRefMATHGoogle Scholar
  16. [16]
    Kiselman, C.: The partial Legendre transformation for plurisubharmonic functions. Invent. Math., 49(2), 137–148 (1978)MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Kiselman, C.: Densité des fonctions plurisousharmoniques. Bull. Soc. Math. France, 107, 295–304 (1979)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Kiselman, C.: La teoremo de Siu por abstraktaj nombroj de Lelong. Aktoj de Internacia Scienca Akademio Comenius, 1, 56–65 (1992)MathSciNetGoogle Scholar
  19. [19]
    Kiselman, C.: Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math., 60, 173–197 (1994)MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Krotz, B., Stanton, J.: Holomorphic extensions of representations: (I) automorphic functions. Ann. of Math., 150, 641–724 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Krotz, B., Stanton, J.: Holomorphic extensions of representations: (II) Geometry and harmonic analysis. Geom. Funct. Anal., 15, 190–245 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Loeb, J. J.: Action d’une forme réelle d’un groupe de Lie complexe sur les fonctions plurisousharmoniques. Ann. Inst. Fourier, 35, 59–97 (1985)MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Onishchik, A. L., Vinberg, E. B.: Lie Groups and Lie Algebras II: Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras, Springer-Verlag, Berlin Heidelberg, 2000MATHGoogle Scholar
  24. [24]
    Prekopa, A.: On logarithmic concave measures and functions. Acad Sci. Math. (Szeged), 34, 335–343 (1973)MathSciNetMATHGoogle Scholar
  25. [25]
    Snow, D. M.: Reductive group action on Stein spaces. Math. Ann., 259, 79–97 (1982)MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Zhou, X.: A proof of the extended future tube conjecture. Izvestiya Ran, Series Math. T., 62, 211–224 (1998)Google Scholar
  27. [27]
    Zhou, X. Y.: Some results related to group actions in several complex variables. Proc. of ICM 2002, 2, 743–753 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fu Sheng Deng
    • 1
  • Hui Ping Zhang
    • 2
  • Xiang Yu Zhou
    • 3
  1. 1.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingP. R. China
  2. 2.Department of Mathematics, School of InformationRenmin (People’s) University of ChinaBeijingP. R. China
  3. 3.Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of MathematicsChinese Academy of SciencesBeijingP. R. China

Personalised recommendations