Advertisement

Acta Mathematica Sinica, English Series

, Volume 34, Issue 3, pp 454–465 | Cite as

Spherical Tropical Geometry: a Survey of Recent Developments

Article
  • 42 Downloads

Abstract

This is a survey of some recent results on spherical tropical geometry.

Keywords

Tropical geometry reductive group action spherical variety Gröbner theory 

MR(2010) Subject Classification

14T05 13P10 14M27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Tsinghua Sanya International Mathematics Forum for hosting the workshop on spherical varieties where the first author was a participant. We would also like to thank the referee for carefully reading the paper and providing useful comments.

References

  1. [1]
    Brion, M.: Vers une généralisation des espaces symétriques. J. Algebra, 134, 115–143 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    De Concini, C., Procesi, C.: Complete symmetric varieties. II. Intersection theory. Algebraic groups and related topics (Kyoto/Nagoya, 1983), 481–513, Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985Google Scholar
  3. [3]
    Gaitsgory, D., Nadler, D.: Spherical varieties and Langlands duality. Mosc. Math. J., 10(1), 65–137, 271 (2010)MathSciNetMATHGoogle Scholar
  4. [4]
    Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V.: Discriminants, resultants and multidimensional determinants. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008MATHGoogle Scholar
  5. [5]
    Gubler, W.: A guide to tropicalizations. Algebraic and combinatorial aspects of tropical geometry, 125–189, Contemp. Math., 589, Amer. Math. Soc., Providence, RI, 2013Google Scholar
  6. [6]
    Kaveh, K., Manon, C.: Gröbner theory and tropical geometry on spherical varieties. arXiv:1611.01841Google Scholar
  7. [7]
    Kennedy, G.: http://u.osu.edu/kennedy.28/files/2014/11/sphericaltropical2-12rpr9e.pdfGoogle Scholar
  8. [8]
    Knop, F.: The asymptotic behavior of invariant collective motion. Invent. Math., 116 (1994)Google Scholar
  9. [9]
    Knop, F., Krötz, B., Sayag, E., et al.: Simple compactifications and polar decomposition of homogeneous real spherical spaces. Selecta Math. N.S. 21 (3), 1071–1097 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Knop, F.: The Luna–Vust theory of spherical embeddings. Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991Google Scholar
  11. [11]
    Luna, D., Vust, Th., Plongements d’espaces homogènes. Comment. Math. Helv., 58, 186–245 (1983)MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Maclagan, D., Sturmfels, B.: Introduction to tropical geometry. Graduate Studies in Mathematics, AMS (2015)CrossRefMATHGoogle Scholar
  13. [13]
    Nash, E., Tropicalizing spherical embeddings. arXiv:1609.07455Google Scholar
  14. [14]
    Popov, V. L.: Contractions of actions of reductive algebraic groups. Math. USSR-Sb., 58 (2), 311–335 (1987)CrossRefMATHGoogle Scholar
  15. [15]
    Sakellaridis, Y.: Spherical varieties and integral representations of L-functions. Algebra Number Theory, 6 (4), 611–667 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Sturmfels, B.: Gröbner bases and convex polytopes. University Lecture Series, 8. American Mathematical Society, Providence, RI, 1996MATHGoogle Scholar
  17. [17]
    Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ., 14, 1–28 (1974)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Tevelev, J.: Compactifications of subvarieties of tori. Amer. J. Math., 129 (4), 1087–1104 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Timashev, D.: Homogeneous spaces and equivariant embeddings. Encyclopaedia of Mathematical Sciences, 138. Invariant Theory and Algebraic Transformation Groups, 8. Springer, Heidelberg, 2011Google Scholar
  20. [20]
    Vogiannou, T.: Spherical tropicalization. arXiv:1511.02203Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PittsburghPittsburghUSA
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonUSA

Personalised recommendations