Acta Mathematica Sinica, English Series

, Volume 34, Issue 6, pp 1028–1036 | Cite as

Unconditional uniqueness of solution for \(\dot H^{s_c }\) critical 4th order NLS in high dimensions



In this paper, we study the unconditional uniqueness of solution for the Cauchy problem of \(\dot H^{s_c } (0 \leqslant s_c < 2)\) critical nonlinear fourth-order Schrödinger equations i t u2u−ϵu = λ|u| α u. By employing paraproduct estimates and Strichartz estimates, we prove that unconditional uniqueness of solution holds in \(C_t (I;\dot H^{s_c } (\mathbb{R}^d ))\) for d ≥ 11 and \(\min \left\{ {1^ - ,\tfrac{8} {{d - 4}}} \right\} \geqslant \alpha > \frac{{ - (d - 4) + \sqrt {(d - 4)^2 + 64} }} {4}\).


Unconditional uniqueness paraproduct estimates Besov spaces fourth order nonlinear Schrödinger equation 

MR(2010) Subject Classification

35Q55 42B25 46E35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baruch, G., Fibich, G., Mandelbaum, E.: Singular solutioins of the L 2-critical biharmonic nonlinear Schrödinger equation. SIAM J. Appl. Math., 70(8), 3319–3341 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Baruch, G., Fibich, G., Mandelbaum, E.: Ring-type singular solutioins of the biharmonic nonlinear Schrödinger equation. Nonlinearity, 23, 2867–2887 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Baruch, G., Fibich, G.: Singular solutioins of the L 2-supercritical biharmonic nonlinear Schrödinger equation. Nonlinearity, 24, 1843–1859 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Ben-Artzi, M., Koch, H., Saut, J. C.: Dispersion estimates for fourth order Schrödinger equations. Comptes Rendus de l’Academie des Sciences Series I Mathematics, 330(2), 87–92 (2000)MATHGoogle Scholar
  5. [5]
    Bulut, A., Czubak, C., Dong, L., et al.: Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions. Comm. Part. Diff. Eqns., 38(4), 575–607 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Burq, N., Planchon, F.: The Benjamin–Ono equation in energy space, Phase space analysis of partial differential equations. Progr. Non. Diff. Eqns. Appl., 69, 55–62 (2006)MATHGoogle Scholar
  7. [7]
    Cazenave, T.: Semilinear Schrödinger Equations, Amer. Math. Soc., Providence, (2003)Google Scholar
  8. [8]
    Cazenave, T., Weissler, F.: The Cauchy problem for the critical nonlinear Schrödinger equations in H s. Nonlinear Anal. TMA, 14, 807–836 (1990)CrossRefMATHGoogle Scholar
  9. [9]
    Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth order dispersion. SIAM J. Appl. Math., 62(4), 1437–1462 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Furioli, G., Planchon, F., Terraneo, E.: Unconditional well-posedness for semilinear Schrödinger and wave equations in H s. Contemp. Math., 147–156 (2003)Google Scholar
  11. [11]
    Furioli, G., Terraneo, E.: Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in H s(Rn). Commun. Contemp. Math., 5(03), 349–367 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Fujita, H., Kato, K.: On the Navier–Stokes initial value problem, I. Arch. Rational Mech. Anal., 16, 269–315 (1964)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Jiang, J., Pausader, B., Shao, S.: The linear profile decomposition for the fourth order Schrödinger equation. J. Differential Equations, 249, 2521–2547 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Karpman, V. L.: Stabilization of soliton instabilities by high-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys. Rev. E, 53(2), 1336–1339 (1996)CrossRefGoogle Scholar
  15. [15]
    Karpman, V. L., Shagalov, A. G.: Stabilitiy of soliton described by nonlinear Schrödinger-type equations with high-order dispersion. Phys D., 144, 194–210 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Kato, T.: On nonlinear Schrödinger equations. II. H s-solutions and unconditional well-posedness. J. d’Anal. Math., 67, 281–306 (1995)CrossRefMATHGoogle Scholar
  17. [17]
    Masmoudi, N., Nakanishi, K.: Uniqueness of solutions for Zakharov systems. Funkcial. Ekvac., 52, 233–253 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Masmoudi, N., Nakanishi, K.: Uniqueness of finite energy solutions for Maxwell–Dirac and Maxwell–Klein–Gorden equations. Comm. Math. Phys., 243, 123–136 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Masmoudi, N., Planchon, F.: On uniqueness for the critical wave equation. Comm. Part. Diff. Eqns., 32, 1099–1107 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Masmoudi, N., Planchon, F.: Uniqueness well-posedness for wave maps. J. Hyper. Diff. Equa., 9, 223–237 (2012)CrossRefMATHGoogle Scholar
  21. [21]
    Miao, C., Wu, H., Zhang, J.: Scattering theory below energy for the cubic fourth-order Schrödinger equation. Math. Nachrichten, 288(7), 798823 (2015)CrossRefGoogle Scholar
  22. [22]
    Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the defocusing energy critical nonlinear Schrödinger equations of fourth order in the radial case. J. Differential Equations, 246, 3715–3749 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the socusing energy critical nonlinear Schrödinger equations of fourth order in dimensions d ≥ 9. J. Differential Equations, 251, 3381–3402 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Miao, C., Zhang, B.: Global well-posedness of the cauchy problem for nonlinear Schrödinger-type equations. Discrete Contin. Dyn. Syst., 17, 181–200 (2007)MathSciNetMATHGoogle Scholar
  25. [25]
    Miao, C., Zheng, J.: Scattering theory for the defocusing fourth-order Schrodinger equation. Nonlinearity, 29, 692736 (2016)MathSciNetCrossRefGoogle Scholar
  26. [26]
    Pausader, B.: Global well-posedness for energy critical Fourth-order Schrödinger equations in the radial case. Dynamics of P. D. E., 4(3), 197–225 (2007)MATHGoogle Scholar
  27. [27]
    Pausader, B.: The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete Contin. Dyn. Syst., 24(4), 1275–1292 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Pausader, B.: Scattering for the beam equation in low dimensions. Indiana Univ. Math. J., 59(3), 791–822 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Pausader, B.: The cubic fourth-order Schrödinger equation. J. Funct. Anal., 256(8), 2473–2517 (2009)MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Pausader, B., Shao, S.: The Mass-critical fourth-order Schrödinger equation in high dimensions. J. Hyp. Diff. Equ., 7(4), 651–705 (2010)CrossRefMATHGoogle Scholar
  31. [31]
    Pecher, H.: Some new well-posedness results for the Klein–Gorden–Schrödinger system. Diff. Integral Eqns., 25, 117–142 (2012)MATHGoogle Scholar
  32. [32]
    Planchon, F.: On uniqueness for semilinear wave equations. Math. Z., 244, 587–599 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    Rogers, K. M.: Unconditional well-posedness for subcritical NLS in H s. C. R. Acad. Sci. Paris Ser., I 345, 395–398 (2007)MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Selberg, S., Tesfahun, A.: Remarks on regularity and uniqueness of the Dirac–Klein–Gorden equations in one space dimension. Nonlin. Differ. Eqns. Appl., 17, 453–465 (2010)CrossRefMATHGoogle Scholar
  35. [35]
    Struwe, M.: Uniqueness for critical nonlinear wave equations and wave maps via the energy inequality. Comm. Pure. Appl. Math., 5219, 1179–1188 (1999)MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Tao, T.: Nonlinear Dispersive Equation: Local and Global Analysis, CBMS Regional Series in Mathematics, 106, American Mathematical Soc., Providence, 2006Google Scholar
  37. [37]
    Triebel, H.: Theory of Function Spaces, Birkhäuser, Basel, 1983CrossRefMATHGoogle Scholar
  38. [38]
    Yin Yin Su Win, Tsutsumi, Y.: Unconditional uniqueness of solution for the Cauchy problem of the nonlinear Schrödinger equation. Hokkaido Math. J., 37, 839–859 (2008)MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    Zhang, J., Zheng, J.: Energy critical fourth-order Schro dinger equations with sub-critical perturbations. Nonlinear Anal. TMA, 73, 1004–1014 (2010)CrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Graduate School of China Academy of Engineering PhysicsBeijingP. R. China
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijingP. R. China

Personalised recommendations