Acta Mathematica Sinica, English Series

, Volume 34, Issue 6, pp 992–1000 | Cite as

Global well-posedness of the 3D generalized rotating magnetohydrodynamics equations

Article
  • 44 Downloads

Abstract

In this paper, we establish the global well-posedness of the generalized rotating magnetohydrodynamics equations if the initial data are in X1−2α defined by \({x^{1 - 2\alpha }} = \left\{ {u \in D'\left( {{R^3}} \right):{{\int_{{R^3}} {\left| \xi \right|} }^{1 - 2\alpha }}\left| {\hat u\left( \xi \right)} \right|d\xi < + \infty } \right\}\). In addition, we also give Gevrey class regularity of the solution.

Keywords

Magnetohydrodynamics fractional MHD incompressible rotation framework Coriolis force 

MR(2010) Subject Classification

35Q35 42B37 35Q86 26A33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the referees for their time and comments.

References

  1. [1]
    Babin, A., Mahalov, A., Nicolaenko, B.: Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids. Asymptot. Anal., 15, 103–150 (1997)MathSciNetMATHGoogle Scholar
  2. [2]
    Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J., 48, 1133–1176 (1999)MathSciNetMATHGoogle Scholar
  3. [3]
    Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J., 50, 1–35 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Bae, H.: Existence and Analyticity of Lei–Lin Solution to the Navier–Stokes Equations. Proc. Amer. Math. Soc., 143, 2887–2892 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Chemin, J. Y., Desjardins, B., Gallagher, I., et al.: Anisotropy and dispersion in rotating fluids. Stud. Math. Appl., 31, 171–192 (2002)MathSciNetMATHGoogle Scholar
  6. [6]
    Chemin, J. Y., Desjardins, B., Gallagher, I., et al.: Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations, Oxford Lecture Series in Mathematics and its Applications 32, Oxford University Press, Oxford, 2006MATHGoogle Scholar
  7. [7]
    Chemin, J. Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in R3. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 599–624 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Chemin, J. Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Amer. Math. Soc., 362, 2859–2873 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Duvaut, G., Lions, J. L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal., 46, 241–279 (1972)CrossRefMATHGoogle Scholar
  10. [10]
    Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal., 87, 359–369 (1989)MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Gallay, Th., Sverak, V.: Remarks on the Cauchy problem for the axisymmetric Navier–Stokes equations. Confluentes Mathematici, 7, 67–92 (2015)CrossRefMATHGoogle Scholar
  12. [12]
    Hieber, M., Shibata, Y.: The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework. Math. Z., 265, 481–491 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Iwabuchi, T., Takada, R.: Global solutions for the Navier–Stokes equations in the rotational framework. Math. Ann., 357, 727–741 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Iwabuchi, T., Takada, R.: Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type. J. Funct. Anal., 267, 1321–1337 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Ladyzhenskaya, O. A.: Unique global solvability of the three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry (in Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 7, 155–177 (1968)Google Scholar
  16. [16]
    Lei, Z.: On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differential Equations, 259, 3202–3215 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Lei, Z., Lin, F.: Global mild solutions of Navier–Stokes equations. Comm. Pure Appl. Math., 64, 1297–1304 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Lemarié-Rieusset, P. G.: Recent developments in the Navier–Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002MATHGoogle Scholar
  19. [19]
    Lions, J. L.: Quelques méthodes de résolution des problémes aux limites nonlinéaires, Donud, Paris, 1969MATHGoogle Scholar
  20. [20]
    Mahalov, A., Titi, E. S., Leibovich, S.: Invariant helical subspaces for the Navier–Stokes equations. Arch. Ration. Mech. Anal., 112, 193–222 (1990)MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Seregin, G., Šverák, V.: On type I singularities of the local axisymmetric solutions of the Navier–Stokes equations. Comm. Partial Differential Equations, 34(1–3), 171–201 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Wang, W., Wu, G.: Global mild solution of the generalized Navier–Stokes equations with the Coriolis force. Appl. Math. Lett., 76, 181–186 (2018)MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Wang, Y., Wang, K.: Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal. Real World Appl., 17, 245–251 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Wu, J.: The generalized incompressible Navier–Stokes equations in Besov spaces. Dyn. Partial Differ. Equ., 1, 381–400 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Wu, J.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces. Comm. Math. Phys., 3, 803–831 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Wu, J.: Viscous and inviscid magnetohydrodynamics equations. J. Anal. Math., 73, 251–265 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Wu, J.: Bounds and new approches for the 3D MHD equations. J. Nonlinear Sci., 12, 395–413 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Wu, J.: Generalized MHD equations. J. Differ. Equ., 195, 284–312 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Wu, J.: Regularity results for weak solutions of the 3D MHD equations. Discrete Contin. Dyn. Syst., 10, 543–556 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Wu, J.: Regularity criteria for the generalized MHD equations. Comm. Partial Differential Equations, 33, 285–306 (2008)MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    Ye, Z.: Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann. Mat. Pura Appl., 195, 1111–1121 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    Zhang, P., Zhang, T.: Global axisymmetric solutions to three-dimensional Navier–Stokes system. Int. Math. Res. Not., 2014(3), 610–642 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations