Acta Mathematica Sinica, English Series

, Volume 34, Issue 5, pp 843–854 | Cite as

K-fusion Frames and the Corresponding Generators for Unitary Systems

Article
  • 23 Downloads

Abstract

Motivated by K-frames and fusion frames, we study K-fusion frames in Hilbert spaces. By the means of operator K, frame operators and quotient operators, several necessary and sufficient conditions for a sequence of closed subspaces and weights to be a K-fusion frame are obtained, and operators preserving K-fusion frames are discussed. In particular, we are interested in the K-fusion frames with the structure of unitary systems. Given a unitary system which has a complete wandering subspace, we give a necessary and sufficient condition for a closed subspace to be a K-fusion frame generator.

Keywords

K-fusion frame K-fusion frame generator wandering subspace unitary system 

MR(2010) Subject Classification

42C15 47D03 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank the referees for their helpful comments and suggestions.

References

  1. [1]
    Candès, E. J., Donoho, D. L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure Appl. Math., 56, 216–266 (2004)MATHGoogle Scholar
  2. [2]
    Casazza, P. G., Kutyniok, G.: Frames of subspaces. Contemp. Math., 345, 87–113 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Casazza, P. G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal., 25, 114–132 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Dai, X., Larson, D.: Wandering vectors for unitary systems and orthogonal wavelets. Mem. Amer. Math. Soc., 134, no. 640 (1998)Google Scholar
  5. [5]
    Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansion. J. Math. Phys., 27, 1271–1283 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Douglas, R. G.: On majorization, fatorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc., 17, 413–415 (1966)MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341–366 (1952)MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Feichtinger, H. G., Strohmer, T.: Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser Inc., Boston, 1998CrossRefMATHGoogle Scholar
  9. [9]
    Gabardo, J., Han, D.: Frame representations for group-like unitary operator systems. J. Operator Theory, 49, 1–22 (2003)MathSciNetMATHGoogle Scholar
  10. [10]
    Găvruţa, L.: Frames for operators. Appl. Comput. Harmon. Anal., 32, 139–144 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Găvruţa, P.: On the duality of fusion frames. J. Math. Anal. Appl., 333, 871–879 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Han, D., Larson, D.: Frames, bases and group representation. Mem. Amer. Math. Soc., 147, no. 697 (2000)Google Scholar
  13. [13]
    Han, D.: Approximations for Gabor and wavelet frames. Trans. Amer. Math. Soc., 355, 3329–3342 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Han, D.: Frame representations and Parseval duals with applications to Gabor frames. Trans. Amer. Math. Soc., 360, 3307–3326 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Han, D., Li, P., Meng, B., et al.: Operator valued frames and structured quantum channels. Sci. China Ser. A, 54, 2361–2372 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Kaftal, V., Larson, D., Zhang, S.: Operator-valued frames. Trans. Amer. Math. Soc., 361, 6349–6385 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Kaufman, W. E.: Semiclosed operators in Hilbert space. Proc. Amer. Math. Soc., 76, 67–73 (1979)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Ramu, G., Johnson, P.: Frame operators of K-frames. Bol. Soc. Esp. Mat. Apl. SeMA, 73, 171–181 (2016)MathSciNetMATHGoogle Scholar
  19. [19]
    Rozell, C. J., Johnson, D. H.: Evaluating local contributions to global performance in wireless sensor and actuator networks. Lecture Notes in Comput. Sci., 4026, 1–16 (2006)CrossRefGoogle Scholar
  20. [20]
    Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322, 437–452 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Xiao, X., Zhu, Y., Găvruţa, L.: Some properties of K-frames in Hilbert spaces. Results Math., 63, 1243–1255 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingP. R. China

Personalised recommendations