Acta Mathematica Sinica, English Series

, Volume 34, Issue 6, pp 933–946 | Cite as

Restricted Lie 2-algebras

  • Yan Tan
  • Zhi Xiang Wu


In this article, we introduce the notions of restricted Lie 2-algebras and crossed modules of restricted Lie algebras, and give a series of examples of restricted Lie 2-algebras. We also construct restricted Lie 2-algebras from A(m)-algebras, restricted Leibniz algebras, restricted right-symmetric algebras. Finally, we prove that there is a one-to-one correspondence between strict restricted Lie 2-algebras and crossed modules of restricted Lie algebras.


Restricted Lie 2-algebra crossed module of restricted Lie algebra A(m)-algebra restricted Leibniz algebra restricted right-symmetric algebra 

MR(2010) Subject Classification

17B50 55U15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the referees for their careful reading and helpful comments and suggestions on this paper.


  1. [1]
    Baez, J. C., Crans, A. S.: Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Categ., 12, 492–538 (2004)MathSciNetzbMATHGoogle Scholar
  2. [2]
    Baez, J. C., Crans, A. S.: Higher Yang–Mills theory. hep-th/0206130Google Scholar
  3. [3]
    Chen, S., Sheng, Y., Zheng, Z.: Non-abelian extensions of Lie 2-algebras. Sci. China. Math., 55(8), 1655–1668 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Cirio, L. S., Martins, J. F.: Infinitesimal 2-braidings and differertial crossed modules. Adv. Math., 277, 426–491 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Csaba, S., Hamid, U.: The classification of p-nilpotent restricted Lie algebras of dimension at most 4. Forum Math., 28(4), 713–727 (2016)MathSciNetzbMATHGoogle Scholar
  6. [6]
    Dokas, I., Loday, J. L.: On restricted Leibniz algebras. Comm. Algebra, 34, 4467–4478 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Dzhumadil’daev, S. A.: Jacobson formula for right-symmetric algebras in characteristic p. Comm. Algebra, 29(9), 3759–3771 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Dzhumadil’daev, S. A., Abdykassymova, S. A.: Leibniz algebras in characteristic p. C. R. Acad. Sci. Paris Sér I Math., 332(12), 1047–1052 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Farnsteiner, R.: Note on Frobenius extensions and restricted Lie superalgebras. J. Pure Appl. Algebra, 108, 241–256 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Jacobson, N.: Basic algebras. II. W. H. Freeman and Co., San Francisco, CA, 1989Google Scholar
  11. [11]
    Jacobson, N.: Lie algebras. Dover Books on Advanced Mathematics, Dover Publications, New York, 1962Google Scholar
  12. [12]
    Jacobson, N.: Restricted Lie algebras of characteristic p. Trans. Amer. Math. Soc., 50, 15–25 (1941)MathSciNetzbMATHGoogle Scholar
  13. [13]
    Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra, 23(6), 2147–2161 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Sheng, Y., Chen, D.: Hom–Lie 2-algebras. J. Algebra, 376, 174–195 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Sheng, Y., Liu, Z.: From Leibniz algebras to Lie 2-algebras. Algebr. Represent. Theory, 19(1), 1–5 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Sheng, Y., Liu, Z., Zhu, C.: Omni–Lie 2-algebras and their Dirac structures. J. Geom. Phys., 61(2), 560–575 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Shu, B.: The generalized restricted representations of graded Lie algebras of Cartan type. J. Algebra, 194(1), 157–177 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Strade, H., Farnsteiner, R.: Modular Lie algebras and their representations. Monographs and textbooks in Pure and Appl. Math, New York, 1988zbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesZhejiang UniversityHangzhouP. R. China

Personalised recommendations