Facing extremes: Cory’s shearwaters adjust their foraging behaviour differently in response to contrasting phases of North Atlantic Oscillation

Abstract

Climate projections predict increases in the frequency and severity of extreme climate events over the next decades. Hence, phases of extreme climatic indices are emerging as one of the most dangerous effects of climate change, though their impacts on wildlife populations are still poorly understood. Here, we studied the foraging behaviour, body condition and breeding performance of a neritic (Berlenga Island) and oceanic (Corvo Island) population of Cory’s shearwaters (Calonectris borealis) in the mid-North Atlantic, during the two most positive and negative phases of North Atlantic Oscillation (NAO) reported in recent decades. We showed that during an extreme negative NAO phase, birds from Berlenga spent less time foraging and provided less food to their chicks, which subsequently grew more slowly and were in poorer body condition. In contrast, the opposite pattern was found during the strong positive NAO phase in this population. Interestingly, during the same extreme negative NAO phase, birds from Corvo were more successful in terms of their foraging and breeding performance, taking advantage of the enhanced productivity associated with the cyclonic eddies (negative sea surface height anomalies) which occurred close to the colony. However, when anticyclonic eddies (positive sea surface height anomalies) were prevalent near the colony during the strong positive NAO phase, birds travelled longer distances, which negatively impacted their own body condition and that of their chicks. Our study shows that populations breeding in neritic and oceanic areas of the eastern North Atlantic Ocean make contrasting foraging behavioural decisions in response to climate extremes and highlights the importance of mesoscale eddies for oceanic populations of pelagic seabirds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abrahms B, Scales KL, Hazen EL, Bograd SJ, Schick RS, Robinson PW, Costa DP (2018) Mesoscale activity facilitates energy gain in a top predator. Proc R Soc B Biol Sci 285:20181101. https://doi.org/10.1098/rspb.2018.1101

    Article  Google Scholar 

  2. Amélineau F, Grémillet D, Harding AMA, Walkusz W, Choquet R, Fort J (2019) Arctic climate change and pollution impact little auk foraging and fitness across a decade. Sci Rep 9:1014. https://doi.org/10.1038/s41598-018-38042-z

    CAS  Article  Google Scholar 

  3. Ancona S, Sánchez-Colón S, Rodríguez C, Drummond H (2011) El Niño in the Warm Tropics: local sea temperature predicts breeding parameters and growth of blue-footed boobies. J Anim Ecol 80:799–808. https://doi.org/10.1111/j.1365-2656.2011.01821.x

    Article  Google Scholar 

  4. Araujo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313(80):1396–1397. https://doi.org/10.1126/science.1131758

    CAS  Article  Google Scholar 

  5. Avalos MR, Ramos JA, Soares M, Ceia FR, Fagundes AI, Gouveia C, Menezes D, Paiva VH (2017) Comparing the foraging strategies of a seabird predator when recovering from a drastic climatic event. Mar Biol 164:48. https://doi.org/10.1007/s00227-017-3082-4

    Article  Google Scholar 

  6. Bailey LD, van de Pol M (2016) Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J Anim Ecol 85:85–96. https://doi.org/10.1111/1365-2656.12451

    Article  Google Scholar 

  7. Bailleul F, Cotté C, Guinet C (2010) Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal. Mar Ecol Prog Ser 408:251–264. https://doi.org/10.3354/meps08560

    Article  Google Scholar 

  8. Barbraud C, Delord K, Weimerskirch H (2015) Extreme ecological response of a seabird community to unprecedented sea ice cover. R Soc Open Sci 2:140456. https://doi.org/10.1098/rsos.140456

    Article  Google Scholar 

  9. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

  10. Becker B, Peery M, Beissinger S (2007) Ocean climate and prey availability affect the trophic level and reproductive success of the marbled murrelet, an endangered seabird. Mar Ecol Prog Ser 329:267–279. https://doi.org/10.3354/meps329267

    CAS  Article  Google Scholar 

  11. Bertram DF, Harfenist A, Smith BD (2005) Ocean climate and El Niño impacts on survival of Cassin’s auklets from upwelling and downwelling domains of British Columbia. Can J Fish Aquat Sci 62:2841–2853. https://doi.org/10.1139/f05-190

    Article  Google Scholar 

  12. Braun CD, Gaube P, Sinclair-Taylor TH, Skomal GB, Thorrold SR (2019) Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc Natl Acad Sci 116:17187–17192. https://doi.org/10.1073/pnas.1903067116

    CAS  Article  Google Scholar 

  13. Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V (2018) Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556:191–196. https://doi.org/10.1038/s41586-018-0006-5

    CAS  Article  Google Scholar 

  14. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  15. Catry T, Ramos JA, Catry I, Monticelli D, Granadeiro JP (2013) Inter-annual variability in the breeding performance of six tropical seabird species: influence of life-history traits and relationship with oceanographic parameters. Mar Biol 160:1189–1201. https://doi.org/10.1007/s00227-013-2171-2

    Article  Google Scholar 

  16. Champagnon J, Lebreton J, Drummond H, Anderson DJ (2018) Pacific decadal and El Niño oscillations shape survival of a seabird. Ecology 99:1063–1072. https://doi.org/10.1002/ecy.2179

    Article  Google Scholar 

  17. Chastel O, Weimerskirch H, Jouventin P (1995) Body condition and seabird reproductive performance: a study of three petrel species. Ecology 76:2240–2246. https://doi.org/10.2307/1941698

    Article  Google Scholar 

  18. Chevin L-M, Hoffmann AA (2017) Evolution of phenotypic plasticity in extreme environments. Philos Trans R Soc Lond B Biol Sci 372:20160138. https://doi.org/10.1098/rstb.2016.0138

    Article  Google Scholar 

  19. Cotté C, Park Y-H, Guinet C, Bost C-A (2007) Movements of foraging king penguins through marine mesoscale eddies. Proc R Soc B Biol Sci 274:2385–2391. https://doi.org/10.1098/rspb.2007.0775

    Article  Google Scholar 

  20. Cubaynes S, Doherty PF, Schreiber EA, Gimenez O (2011) To breed or not to breed: a seabird’s response to extreme climatic events. Biol Lett 7:303–306. https://doi.org/10.1098/rsbl.2010.0778

    Article  Google Scholar 

  21. de Grissac S, Bartumeus F, Cox SL, Weimerskirch H (2017) Early-life foraging: behavioral responses of newly fledged albatrosses to environmental conditions. Ecol Evol 7:6766–6778. https://doi.org/10.1002/ece3.3210

    Article  Google Scholar 

  22. Descamps S, Tarroux A, Varpe Ø, Yoccoz NG, Tveraa T, Lorentsen S-H (2015) Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird. Ecol Evol 5:314–325. https://doi.org/10.1002/ece3.1357

    Article  Google Scholar 

  23. Duffy DC (1990) Seabirds and the 1982-1984 El Niño-Southern Oscillation. Elsevier Oceanogr Ser 52:395–415. https://doi.org/10.1016/S0422-9894(08)70043-6

    Article  Google Scholar 

  24. Easterling DR (2000) Climate extremes: observations, modeling, and impacts. Science 289(80):2068–2074. https://doi.org/10.1126/science.289.5487.2068

    CAS  Article  Google Scholar 

  25. Falkowski PG, Ziemann D, Kolber Z, Bienfang PK (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature 352:55–58. https://doi.org/10.1038/352055a0

    Article  Google Scholar 

  26. Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84:282–288. https://doi.org/10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2

    Article  Google Scholar 

  27. Ferraroli S, Georges J-Y, Gaspar P, Le Maho Y (2004) Where leatherback turtles meet fisheries. Nature 429:521–522. https://doi.org/10.1038/429521a

    CAS  Article  Google Scholar 

  28. Frederiksen M, Harris MP, Daunt F, Rothery P, Wanless S (2004) Scale-dependent climate signals drive breeding phenology of three seabird species. Glob Chang Biol 10:1214–1221. https://doi.org/10.1111/j.1529-8817.2003.00794.x

    Article  Google Scholar 

  29. Frederiksen M, Daunt F, Harris MP, Wanless S (2008) The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird. J Anim Ecol 77:1020–1029. https://doi.org/10.1111/j.1365-2656.2008.01422.x

    CAS  Article  Google Scholar 

  30. Fu L-L, Chelton D, Le Traon P-Y, Morrow R (2010) Eddy dynamics from satellite altimetry. Oceanography 23:14–25. https://doi.org/10.5670/oceanog.2010.02

    Article  Google Scholar 

  31. Garriga J, Palmer JRB, Oltra A, Bartumeus F (2016) Expectation-maximization binary clustering for behavioural annotation. PLoS ONE 11:e0151984. https://doi.org/10.1371/journal.pone.0151984

    CAS  Article  Google Scholar 

  32. Gaube P, McGillicuddy DJ, Chelton DB, Behrenfeld MJ, Strutton PG (2014) Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J Geophys Res Ocean 119:8195–8220. https://doi.org/10.1002/2014JC010111

    Article  Google Scholar 

  33. Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137. https://doi.org/10.3354/meps08212

    Article  Google Scholar 

  34. Guinet C, Chastel O, Koudil M, Durbec JP, Jouventin P (1998) Effects of warm sea–surface temperature anomalies on the blue petrel at the Kerguelen Islands. Proc R Soc Lond Ser B Biol Sci 265:1001–1006. https://doi.org/10.1098/rspb.1998.0390

    Article  Google Scholar 

  35. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(80):1523–1528. https://doi.org/10.1126/science.1189930

    CAS  Article  Google Scholar 

  36. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(80):676–679. https://doi.org/10.1126/science.269.5224.676

    CAS  Article  Google Scholar 

  37. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. Geophys Monogr Geophys Union 134:1–36. https://doi.org/10.1029/134GM01

    Article  Google Scholar 

  38. Hyrenbach K, Veit R, Weimerskirch H, Hunt GLJ (2006) Seabird associations with mesoscale eddies: the subtropical Indian Ocean. Mar Ecol Prog Ser 324:271–279. https://doi.org/10.3354/meps324271

    Article  Google Scholar 

  39. Igual JM, Forero MG, Tavecchia G, González-Solis J, Martínez-Abraín A, Hobson KA, Ruiz X, Oro D (2005) Short-term effects of data-loggers on Cory’s shearwater (Calonectris diomedea). Mar Biol 146:619–624. https://doi.org/10.1007/s00227-004-1461-0

    Article  Google Scholar 

  40. Inchausti P, Guinet C, Koudil M, Durbec J-P, Barbraud C, Weimerskirch H, Cherel Y, Jouventin P (2003) Inter-annual variability in the breeding performance of seabirds in relation to oceanographic anomalies that affect the Crozet and the Kerguelen sectors of the Southern Ocean. J Avian Biol 34:170–176. https://doi.org/10.1034/j.1600-048X.2003.03031.x

    Article  Google Scholar 

  41. Jaquemet S, Ternon JF, Kaehler S, Thiebot JB, Dyer B, Bemanaja E, Marteau C, Le Corre M (2014) Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel. Deep Sea Res Part II Top Stud Oceanogr 100:200–211. https://doi.org/10.1016/j.dsr2.2013.10.027

    Article  Google Scholar 

  42. Jenouvrier S, Barbraud C, Weimerskirch H (2003) Effects of climate variability on the temporal population dynamics of southern fulmars. J Anim Ecol 72:576–587. https://doi.org/10.1046/j.1365-2656.2003.00727.x

    Article  Google Scholar 

  43. Jenouvrier S, Péron C, Weimerskirch H (2015) Extreme climate events and individual heterogeneity shape lifehistory traits and population dynamics. Ecol Monogr 85:605–623. https://doi.org/10.1890/14-1834.1.sm

    Article  Google Scholar 

  44. Jenouvrier S, Desprez M, Fay R, Barbraud C, Weimerskirch H, Delord K, Caswell H (2018) Climate change and functional traits affect population dynamics of a long-lived seabird. J Anim Ecol 87:906–920. https://doi.org/10.1111/1365-2656.12827

    Article  Google Scholar 

  45. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. https://doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2

    Article  Google Scholar 

  46. José YS, Aumont O, Machu E, Penven P, Moloney CL, Maury O (2014) Influence of mesoscale eddies on biological production in the Mozambique Channel: several contrasted examples from a coupled ocean-biogeochemistry model. Deep Sea Res Part II Top Stud Oceanogr 100:79–93. https://doi.org/10.1016/j.dsr2.2013.10.018

    CAS  Article  Google Scholar 

  47. Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375. https://doi.org/10.1146/annurev.marine.010908.163704

    Article  Google Scholar 

  48. Labocha MK, Schutz H, Hayes JP (2014) Which body condition index is best? Oikos 123:111–119. https://doi.org/10.1111/j.1600-0706.2013.00755.x

    Article  Google Scholar 

  49. Le Bohec C, Durant JM, Gauthier-Clerc M, Stenseth NC, Park Y-H, Pradel R, Gremillet D, Gendner J-P, Le Maho Y (2008) King penguin population threatened by Southern Ocean warming. Proc Natl Acad Sci 105:2493–2497. https://doi.org/10.1073/pnas.0712031105

    Article  Google Scholar 

  50. Louzao M, Wiegand T, Bartumeus F, Weimerskirch H (2014) Coupling instantaneous energy-budget models and behavioural mode analysis to estimate optimal foraging strategy: an example with wandering albatrosses. Mov Ecol 2:8. https://doi.org/10.1186/2051-3933-2-8

    Article  Google Scholar 

  51. Magalhães M, Santos R, Hamer K (2008) Dual-foraging of Cory’s shearwaters in the Azores: feeding locations, behaviour at sea and implications for food provisioning of chicks. Mar Ecol Prog Ser 359:283–293. https://doi.org/10.3354/meps07340

    Article  Google Scholar 

  52. Martin AR (1986) Feeding association between dolphins and shearwaters around the Azores Islands. Can J Zool 64:1372–1374. https://doi.org/10.1139/z86-205

    Article  Google Scholar 

  53. Martin AP (2003) On estimates for the vertical nitrate flux due to eddy pumping. J Geophys Res 108:3359. https://doi.org/10.1029/2003JC001841

    CAS  Article  Google Scholar 

  54. Mason E, Pascual A, McWilliams JC (2014) A New Sea surface height–based code for oceanic mesoscale eddy tracking. J Atmos Ocean Technol 31:1181–1188. https://doi.org/10.1175/JTECH-D-14-00019.1

    Article  Google Scholar 

  55. Massie PP, McIntyre T, Ryan PG, Bester MN, Bornemann H, Ansorge IJ (2016) The role of eddies in the diving behaviour of female southern elephant seals. Polar Biol 39:297–307. https://doi.org/10.1007/s00300-015-1782-0

    Article  Google Scholar 

  56. McGillicuddy DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266. https://doi.org/10.1038/28367

    CAS  Article  Google Scholar 

  57. McGillicuddy DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson CA, Davis CS, Ewart C, Falkowski PG, Goldthwait SA, Hansell DA, Jenkins WJ, Johnson R, Kosnyrev VK, Ledwell JR, Li QP, Siegel DA, Steinberg DK (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316(80):1021–1026. https://doi.org/10.1126/science.1136256

    CAS  Article  Google Scholar 

  58. Mendez L, Borsa P, Cruz S, de Grissac S, Hennicke J, Lallemand J, Prudor A, Weimerskirch H (2017) Geographical variation in the foraging behaviour of the pantropical red-footed booby. Mar Ecol Prog Ser 568:217–230. https://doi.org/10.3354/meps12052

    Article  Google Scholar 

  59. Moe B, Stempniewicz L, Jakubas D, Angelier F, Chastel O, Dinessen F, Gabrielsen G, Hanssen F, Karnovsky N, Rønning B, Welcker J, Wojczulanis-Jakubas K, Bech C (2009) Climate change and phenological responses of two seabird species breeding in the high-Arctic. Mar Ecol Prog Ser 393:235–246. https://doi.org/10.3354/meps08222

    Article  Google Scholar 

  60. Monteiro LR, Ramos JA, Furness RW, del Nevo AJ (1996) Movements, morphology, breeding, molt, diet and feeding of seabirds in the Azores. Colon Waterbirds 19:82. https://doi.org/10.2307/1521810

    Article  Google Scholar 

  61. Monticelli D, Ramos J, Quartly G (2007) Effects of annual changes in primary productivity and ocean indices on breeding performance of tropical roseate terns in the western Indian Ocean. Mar Ecol Prog Ser 351:273–286. https://doi.org/10.3354/meps07119

    Article  Google Scholar 

  62. Morel A, Claustre H, Gentili B (2010) The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 7:3139–3151. https://doi.org/10.5194/bg-7-3139-2010

    Article  Google Scholar 

  63. Moreno J, Møller AP (2011) Extreme climatic events in relation to global change and their impact on life histories. Curr Zool 57:375–389. https://doi.org/10.1093/czoolo/57.3.375

    Article  Google Scholar 

  64. Morrison KW, Mark Hipfner J, Blackburn GS, Green DJ (2011) Effects of extreme climate events on adult survival of three Pacific auks. Auk 128:707–715. https://doi.org/10.1525/auk.2011.10198

    Article  Google Scholar 

  65. Nel D, Lutjeharms J, Pakhomov E, Ansorge I, Ryan P, Klages N (2001) Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Mar Ecol Prog Ser 217:15–26. https://doi.org/10.3354/meps217015

    Article  Google Scholar 

  66. Osborn TJ (2011) Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather 66:19–21. https://doi.org/10.1002/wea.660

    Article  Google Scholar 

  67. Oschlies A, Garçon V (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394:266–269. https://doi.org/10.1038/28373

    Article  Google Scholar 

  68. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14. https://doi.org/10.1007/s004420100655

    Article  Google Scholar 

  69. Paiva VH, Geraldes P, Ramírez I, Meirinho A, Garthe S, Ramos JA (2010a) Foraging plasticity in a pelagic seabird species along a marine productivity gradient. Mar Ecol Prog Ser 398:259–274. https://doi.org/10.3354/meps08319

    CAS  Article  Google Scholar 

  70. Paiva VH, Geraldes P, Ramírez I, Garthe S, Ramos JA (2010b) How area restricted search of a pelagic seabird changes while performing a dual foraging strategy. Oikos 119:1423–1434. https://doi.org/10.1111/j.1600-0706.2010.18294.x

    Article  Google Scholar 

  71. Paiva VH, Geraldes P, Ramírez I, Meirinho A, Garthe S, Ramos JA (2010c) Oceanographic characteristics of areas used by Cory’s shearwaters during short and long foraging trips in the North Atlantic. Mar Biol 157:1385–1399. https://doi.org/10.1007/s00227-010-1417-5

    Article  Google Scholar 

  72. Paiva VH, Geraldes P, Marques V, Rodríguez R, Garthe S, Ramos JA (2013a) Effects of environmental variability on different trophic levels of the North Atlantic food web. Mar Ecol Prog Ser 477:15–28. https://doi.org/10.3354/meps10180

    Article  Google Scholar 

  73. Paiva VH, Geraldes P, Ramirez I, Werner A, Garthe S, Ramos JA (2013b) Overcoming difficult times: the behavioural resilience of a marine predator when facing environmental stochasticity. Mar Ecol Prog Ser 486:277–288. https://doi.org/10.3354/meps10332

    Article  Google Scholar 

  74. Paiva VH, Pereira J, Ceia FR, Ramos JA (2017) Environmentally driven sexual segregation in a marine top predator. Sci Rep 7:2590. https://doi.org/10.1038/s41598-017-02854-2

    CAS  Article  Google Scholar 

  75. Pereira JM, Krüger L, Oliveira N, Meirinho A, Silva A, Ramos JA, Paiva VH (2018) Using a multi-model ensemble forecasting approach to identify key marine protected areas for seabirds in the Portuguese coast. Ocean Coast Manag 153:98–107. https://doi.org/10.1016/j.ocecoaman.2017.12.014

    Article  Google Scholar 

  76. Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite transmitters on albatrosses and petrels. Auk 120:1082–1090. https://doi.org/10.1093/auk/120.4.1082

    Article  Google Scholar 

  77. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/

  78. Ramos JA, Maul A, Ayrton V, Bullock I, Hunter J, Bowler J, Castle G, Mileto R, Pacheco C (2002) Influence of local and large-scale weather events and timing of breeding on tropical roseate tern reproductive parameters. Mar Ecol Prog Ser 243:271–279. https://doi.org/10.3354/meps243271

    Article  Google Scholar 

  79. Ramos JA, Moniz Z, Solá E, Monteiro LR (2003) Reproductive measures and chick provisioning of Cory’s shearwater Calonectris diomedea borealis in the Azores. Bird Study 50:47–54. https://doi.org/10.1080/00063650309461289

    Article  Google Scholar 

  80. Ramos JA, Maul AM, Bowler J, Wood L, Threadgold R, Johnson S, Birch D, Walker S (2006) Annual variation in laying date and breeding success of Brown Noddies on Aride Island, Seychelles. Emu 106:81–86. https://doi.org/10.1071/MU05023

    Article  Google Scholar 

  81. Ramos R, Granadeiro JP, Rodríguez B, Navarro J, Paiva VH, Bécares J, Reyes-González JM, Fagundes I, Ruiz A, Arcos P, González-Solís J, Catry P (2013) Meta-population feeding grounds of Cory’s shearwater in the subtropical Atlantic Ocean: implications for the definition of marine protected areas based on tracking studies. Divers Distrib 19:1284–1298. https://doi.org/10.1111/ddi.12088

    Article  Google Scholar 

  82. Ropert-Coudert Y, Kato A, Meyer X, Pellé M, MacIntosh AJJ, Angelier F, Chastel O, Widmann M, Arthur B, Raymond B, Raclot T (2015) A complete breeding failure in an Adélie penguin colony correlates with unusual and extreme environmental events. Ecography 38(2):111–113. https://doi.org/10.1111/ecog.01182

    Article  Google Scholar 

  83. Sabarros P, Ménard F, Lévénez J, Tew-Kai E, Ternon J (2009) Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel. Mar Ecol Prog Ser 395:101–107. https://doi.org/10.3354/meps08087

    Article  Google Scholar 

  84. Sandvik H, Einar Erikstad K (2008) Seabird life histories and climatic fluctuations: a phylogenetic-comparative time series analysis of North Atlantic seabirds. Ecography (Cop) 31:73–83. https://doi.org/10.1111/j.2007.0906-7590.05090.x

    Article  Google Scholar 

  85. Şekercioğlu ÇH, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18. https://doi.org/10.1016/j.biocon.2011.10.019

    Article  Google Scholar 

  86. Shackell NL, Frank KT, Fisher JAD, Petrie B, Leggett WC (2010) Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem. Proc R Soc B Biol Sci 277:1353–1360. https://doi.org/10.1098/rspb.2009.1020

    Article  Google Scholar 

  87. Sherley R, Underhill L, Barham B, Barham P, Coetzee J, Crawford R, Dyer B, Leshoro T, Upfold L (2013) Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Mar Ecol Prog Ser 473:291–301. https://doi.org/10.3354/meps10070

    Article  Google Scholar 

  88. Sillmann J, Thorarinsdottir T, Keenlyside N, Schaller N, Alexander LV, Hegerl G, Seneviratne SI, Vautard R, Zhang X, Zwiers FW (2017) Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim Extrem 18:65–74. https://doi.org/10.1016/j.wace.2017.10.003

    Article  Google Scholar 

  89. Simeone A, Araya B, Bernal M, Diebold E, Grzybowski K, Michaels M, Teare J, Wallace R, Willis M (2002) Oceanographic and climatic factors influencing breeding and colony attendance patterns of Humboldt penguins Spheniscus humboldti in Central Chile. Mar Ecol Prog Ser 227:43–50. https://doi.org/10.3354/meps227043

    Article  Google Scholar 

  90. Sousa FM, Nascimento S, Casimiro H, Boutov D (2008) Identification of upwelling areas on sea surface temperature images using fuzzy clustering. Remote Sens Environ 112:2817–2823. https://doi.org/10.1016/j.rse.2008.01.014

    Article  Google Scholar 

  91. Stenseth NC (2002) Ecological effects of climate fluctuations. Science 297(80):1292–1296. https://doi.org/10.1126/science.1071281

    CAS  Article  Google Scholar 

  92. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan K, Yoccoz NG, Ådlandsvik B (2003) Review article. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond Ser B Biol Sci 270:2087–2096. https://doi.org/10.1098/rspb.2003.2415

    Article  Google Scholar 

  93. Stramma L, Bange HW, Czeschel R, Lorenzo A, Frank M (2013) On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru. Biogeosciences 10:7293–7306. https://doi.org/10.5194/bg-10-7293-2013

    Article  Google Scholar 

  94. Surman C, Nicholson L, Santora J (2012) Effects of climate variability on breeding phenology and performance of tropical seabirds in the eastern Indian Ocean. Mar Ecol Prog Ser 454:147–157. https://doi.org/10.3354/meps09729

    Article  Google Scholar 

  95. Sydeman WJ, Bradley RW, Warzybok P, Abraham CL, Jahncke J, Hyrenbach KD, Kousky V, Hipfner JM, Ohman MD (2006) Planktivorous auklet Ptychoramphus aleuticus responses to ocean climate, 2005: Unusual atmospheric blocking? Geophys Res Lett 33:L22S09. https://doi.org/10.1029/2006GL026736

    Article  Google Scholar 

  96. Sydeman WJ, Poloczanska E, Reed TE, Thompson SA (2015) Climate change and marine vertebrates. Science 350(80):772–777. https://doi.org/10.1126/science.aac9874

    CAS  Article  Google Scholar 

  97. Tew Kai E, Marsac F (2010) Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel. Prog Oceanogr 86:214–223. https://doi.org/10.1016/j.pocean.2010.04.010

    Article  Google Scholar 

  98. Thornalley DJR, Oppo DW, Ortega P, Robson JI, Brierley CM, Davis R, Hall IR, Moffa-Sanchez P, Rose NL, Spooner PT, Yashayaev I, Keigwin LD (2018) Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556:227–230. https://doi.org/10.1038/s41586-018-0007-4

    CAS  Article  Google Scholar 

  99. Thorne LH, Conners MG, Hazen EL, Bograd SJ, Antolos M, Costa DP, Shaffer SA (2016) Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses. J R Soc Interface 13:20160196. https://doi.org/10.1098/rsif.2016.0196

    Article  Google Scholar 

  100. Tussadiah A, Pranowo WS, Syamsuddin ML, Riyantini I, Nugraha B, Novianto D (2018) Characteristic of eddies kinetic energy associated with yellowfin tuna in southern Java Indian Ocean. OP Conf Ser: Earth Environ Sci 176:012004. https://doi.org/10.1088/1755-1315/176/1/012004

  101. Tynan CT (1997) Cetacean distributions and oceanographic features near the Kerguelen plateau. Geophys Res Lett 24:2793–2796. https://doi.org/10.1029/97GL02860

    Article  Google Scholar 

  102. Uchiyama Y, Suzue Y, Yamazaki H (2017) Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio. J Geophys Res Oceans 122:5046–5062. https://doi.org/10.1002/2017JC012847

    Article  Google Scholar 

  103. Ummenhofer CC, Meehl GA (2017) Extreme weather and climate events with ecological relevance: a review. Philos Trans R Soc B Biol Sci 372:20160135. https://doi.org/10.1098/rstb.2016.0135

    Article  Google Scholar 

  104. Villard P, Bonenfant C, Bretagnolle V (2011) Effects of satellite transmitters fitted to breeding Cory’s shearwaters. J Wildl Manag 75:709–714. https://doi.org/10.1002/jwmg.90

    Article  Google Scholar 

  105. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a

    CAS  Article  Google Scholar 

  106. Weimerskirch H, Le Corre M, Kai ET, Marsac F (2010) Foraging movements of great frigatebirds from Aldabra Island: relationship with environmental variables and interactions with fisheries. Prog Oceanogr 86:204–213. https://doi.org/10.1016/j.pocean.2010.04.003

    Article  Google Scholar 

  107. Weimerskirch H, Louzao M, de Grissac S, Delord K (2012) Changes in wind pattern alter albatross distribution and life-history traits. Science 335(80):211–214. https://doi.org/10.1126/science.1210270

    CAS  Article  Google Scholar 

  108. Wilson RP, Pütz K, Peters G, Culik B, Scolaro JA, Charrassin JB, Ropert-Coudert Y (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl Soc Bull 25:101–106. https://www.jstor.org/stable/3783290

  109. Wolf SG, Sydeman WJ, Hipfner JM, Abraham CL, Tershy BR, Croll DA (2009) Range-wide reproductive consequences of ocean climate variability for the seabird Cassin’s auklet. Ecology 90:742–753. https://doi.org/10.1890/07-1267.1

    Article  Google Scholar 

  110. Woodworth PA, Schorr GS, Baird RW, Webster DL, McSweeney DJ, Hanson MB, Andrews RD, Polovina JJ (2012) Eddies as offshore foraging grounds for melon-headed whales (Peponocephala electra). Mar Mamm Sci 28:638–647. https://doi.org/10.1111/j.1748-7692.2011.00509.x

    Article  Google Scholar 

  111. Zavalaga CB, Plenge MA, Bertolero A (2008) The breeding biology of the Peruvian tern (Sternula lorata) in Peru. Waterbirds 31:550. https://doi.org/10.1675/1524-4695-31.4.550

    Article  Google Scholar 

  112. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support given by the Portuguese Foundation for Science and Technology (FCT) through a doctoral grant attributed to JMP (SFRH/BD/123499/2016) and the postdoc grants attributed to FRC (SFRH/BPD/95372/2013) and VHP (SFRH/BPD/85024/2012). This study benefited from the strategic program granted to MARE and was financed by FCT (UIDB/04292/2020). We are very grateful to the Instituto da Conservação da Natureza e Florestas (ICNF) for the logistical support and permission to collect data at the different study sites. We thank our friend and colleague Jenny Grigg for proofreading a final version of the manuscript. Finally, we would like to thank the Editor and two anonymous reviewers for their valuable comments that significantly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Pereira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Dror Angel

Electronic supplementary material

ESM 1

(DOCX 618 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.M., Paiva, V.H., Ceia, F.R. et al. Facing extremes: Cory’s shearwaters adjust their foraging behaviour differently in response to contrasting phases of North Atlantic Oscillation. Reg Environ Change 20, 77 (2020). https://doi.org/10.1007/s10113-020-01662-1

Download citation

Keywords

  • Body condition
  • Climate extreme
  • Foraging plasticity
  • Mesoscale eddies
  • Seabird
  • Sea surface height anomalies