How warmer and drier will the Mediterranean region be at the end of the twenty-first century?

Abstract

Nearly all regions in the world are projected to become dryer in a warming climate. Here, we investigate the Mediterranean region, often referred to as a climate change “hot spot”. From regional climate simulations, it is shown that although enhanced warming and drying over land is projected, the spatial pattern displays high variability. Indeed, drying is largely caused by enhanced warming over land. However, in Northern Europe, soil moisture alleviates warming induced drying by up to 50% due to humidity uptake from land. In already arid regions, the Mediterranean Sea is generally the only humidity source, and drying is only due to land warming. However, over Sahara and the Iberian Peninsula, enhanced warming over land is insufficient to explain the extreme drying. These regions are also isolated from humidity advection by heat lows, which are cyclonic circulation anomalies associated with surface heating over land. The cyclonic circulation scales with the temperature gradient between land and ocean which increases with climate change, reinforcing the cyclonic circulation over Sahara and the Iberian Peninsula, both diverting the zonal advection of humidity to the south of the Iberian Peninsula. The dynamics are therefore key in the warming and drying of the Mediterranean region, with extreme aridification over the Sahara and Iberian Peninsula. In these regions, the risk for human health due to the thermal load which accounts for air temperature and humidity is therefore projected to increase significantly with climate change at a level of extreme danger.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bador M, Terray L, Boé J, Somot S, Alias A, Gibelin AL, Dubuisson B (2017) Future summer mega-heatwave and record-breaking temperatures in a warmer France climate Environ. Res Lett 12:074025. https://doi.org/10.1088/1748-9326/aa751c

    Article  Google Scholar 

  2. Bastin S, Drobinski P, Chiriaco M, Bock O, Roehrig R, Gallardo C, Conte D, Dominguez-Alonso M, Li L, Lionello P, Parracho AC (2019) Impact of humidity biases on light precipitation occurrence: observations versus simulations. Atmos Chem Phys 19:1471–1490. https://doi.org/10.5194/acp-19-1471-2019

    CAS  Article  Google Scholar 

  3. Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2007) Diurnal cycle of water vapor as documented by a dense GPS network in a coastal area during ESCOMPTE-IOP2. J Appl Meteorol Climatol 46:167–182. https://doi.org/10.1175/JAM2450.1

    Article  Google Scholar 

  4. Christidis N, Jones GS, Stott PA (2014) Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat Clim Chang 5:46–50. https://doi.org/10.1038/nclimate2468

    Article  Google Scholar 

  5. Cuttelod A, García N, Abdul Malak D, Temple H, Katariya V (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vié J-C, Hilton-Taylor C, Stuart SN (eds) The 2008 review of the IUCN red list of threatened species. IUCN Gland, Switzerland

    Google Scholar 

  6. Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606. https://doi.org/10.1175/JCLI3816.1

    Article  Google Scholar 

  7. Drobinski P, Da Silva N, Panthou G, Bastin S, Muller C, Ahrens B, Borga M, Conte D, Fosser G, Giorgi F, Güttler I, Kotroni V, Li L, Morin E, Onol B, Quintana-Segui P, Romera R, Torma CZ (2018a) Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Clim Dyn 51:1237–1257. https://doi.org/10.1007/s00382-016-3083-x

    Article  Google Scholar 

  8. Drobinski P, Bastin S, Arsouze T, Béranger K, Flaounas E, Stéfanon M (2018b) North-Western Mediterranean sea-breeze circulation in a regional climate system model. Clim Dyn 51:1077–1093. https://doi.org/10.1007/s00382-017-3595-z

    Article  Google Scholar 

  9. Drobinski P, Alonzo B, Bastin S, Da Silva N, Muller CJ (2016) Scaling of precipitation extremes with temperature in the French Mediterranean region: what explains the hook shape? J Geophys Res 121. https://doi.org/10.1002/2015JD023497

  10. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. https://doi.org/10.1175/BAMS-D-12-00242.1

    Article  Google Scholar 

  11. Engelstaedter S, Washington R, Flamant C, Parker DJ, Allen CJT, Todd MC (2015) The Saharan heat low and moisture transport path-ways in the central Sahara —Multiaircraft observations and Africa-LAM evaluation, J. Geophys. Res Atmos 120:4417–4442. https://doi.org/10.1002/2015JD023123

  12. Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094. https://doi.org/10.5194/acp-13-10081-2013

    CAS  Article  Google Scholar 

  13. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the august 2003 heat wave in France. Int Arch Occup Environ Health 80:16–24. https://doi.org/10.1007/s00420-006-0089-4

    CAS  Article  Google Scholar 

  14. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. https://doi.org/10.1029/2006GL025734

    Article  Google Scholar 

  15. Griffiths JF, Soliman KH (1972) Climates of Africa, world survey of climatology, vol 10. Elsevier Publishing Co, pp 604

  16. Hoinka KP, De Castro M (2003) The Iberian Peninsula thermal low. Quart J Roy Meteorol Soc 129:1491–1511. https://doi.org/10.1256/qj.01.189

    Article  Google Scholar 

  17. IPCC. Summary for policymakers. In Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 3–29

  18. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, BouwerLM BA, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. https://doi.org/10.1007/s10113-013-0499-2

    Article  Google Scholar 

  19. Köppen W (1936) Das geographishe system der klimate. In Köppen and Geiger (Eds.) Handbuch der Klimatologie Band I, Teil C. Gebrüder Borntraeger, Berlin, 46 pp.

  20. Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore JP, Sultan B, Pelon J (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33:313–330. https://doi.org/10.1007/s00382-009-0553-4

    Article  Google Scholar 

  21. Lemordant L, Gentine P, Stéfanon M, Drobinski P, Fatichi H (2016) Modification of land-atmosphere interactions by CO2 effects: implications for summer dryness and heatwave amplitude. Geophys Res Lett 43:10240–10248. https://doi.org/10.1002/2016GL069896

    CAS  Article  Google Scholar 

  22. Lionello P, Scarascia L (2018) The relation between climate change in the Mediterranean region and global warming. Reg Environ Chang 18:1481–1493. https://doi.org/10.1007/s10113-018-1290-1

    Article  Google Scholar 

  23. Mariotti A, Pan Y, Zeng N, Alessandri A (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44:1437–1456. https://doi.org/10.1007/s00382-015-2487-3

    Article  Google Scholar 

  24. Mariotti A, Zeng N, Yoon J, Artale V, Navarra A, Alpert P, Li LZX (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3:044001. https://doi.org/10.1088/1748-9326/3/4/044001

    Article  Google Scholar 

  25. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    CAS  Article  Google Scholar 

  26. Muller CJ, O'Gorman PA, Back LE (2011) Intensification of precipitation extremes with warming in a cloud resolving model. J Clim 24:2784–2800. https://doi.org/10.1175/2011JCLI3876.1

    Article  Google Scholar 

  27. O'Gorman PA, Muller CG (2010) How closely do changes in surface and column water vapour follow Clausius-Clapeyron scaling in climate change simulations? Environ Res Lett 5:025,207. https://doi.org/10.1088/1748-9326/5/2/025207

    Article  Google Scholar 

  28. Portela A, Castro M (1996) Summer thermal lows in the Iberian Peninsula: a three-dimensional simulation. Quart J Roy Meteorol Soc 122:1–22. https://doi.org/10.1002/qj.49712252902

    Article  Google Scholar 

  29. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

    Article  Google Scholar 

  30. Raymond F, Ullman A, Camberlin P, Drobinski P, Chateau Smith C (2016) Extreme dry spell detection and climatology over the Mediterranean basin during the wet season. Geophys Res Lett 43:7196–7204. https://doi.org/10.1002/2016GL069758

    Article  Google Scholar 

  31. Raymond F, Drobinski P, Ullman A, Camberlin P (2018a) Extreme dry spells over the Mediterranean basin during the wet season: assessment of HyMeX/Med-CORDEX regional climate simulations. Int J Climatol 38:3090–3105. https://doi.org/10.1002/joc.5487

    Article  Google Scholar 

  32. Raymond F, Ullman A, Camberlin P, Oueslati B, Drobinski P (2018b) Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin. Clim Dyn 50:4437–4453. https://doi.org/10.1007/s00382-017-3884-6

    Article  Google Scholar 

  33. Raymond F, Ullmann A, Tramblay Y, Drobinski P, Camberlin P (2019) Mediterranean extreme dry spells during the wet season: evolution in climate change scenarios Reg Env Change 19:2339–2351. https://doi.org/10.1007/s10113-019-01526-3

  34. Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299. https://doi.org/10.1007/s00382-006-0125-9

    Article  Google Scholar 

  35. Russo S, Sillmann J, Fischer EM (2015) Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ Res Lett 10:124003. https://doi.org/10.1088/1748-9326/10/12/124003

    Article  Google Scholar 

  36. Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell'Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Raznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloche S, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde A, Gaertner M, Galan P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jorda G, Lheveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Macias-Moy D, Onol B, Rajkovic B, Ramage K, Sevault F, Sannino G, Struglia MV, Sanna A, Torma C, Vervatis V (2016) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97:1187–1208. https://doi.org/10.1175/BAMS-D-14-00176.1

    Article  Google Scholar 

  37. Scheff J, Frierson DMW (2015) Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim 28:5583–5600. https://doi.org/10.1175/JCLI-D-14-00480.1

    Article  Google Scholar 

  38. Sherwood S, Fu Q (2014) A drier future? Science 343:737–739. https://doi.org/10.1126/science.1247620

    CAS  Article  Google Scholar 

  39. Simmons AJ, Willett K, Jones P, Thorne P, Dee D (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115. https://doi.org/10.1029/2009JD012442

  40. Smith EA (1986) The structure of the Arabian heat low. Part I: surface energy budget. Mon Weather Rev 114:1067–1083. https://doi.org/10.1175/1520-0493(1986)114<1067:TSOTAH>2.0.CO;2

    Article  Google Scholar 

  41. Solomon S, Qin D, Manning M, Alley R B, Berntsen T, Bindoff N L, Chen Z, Chidthaisong A, Gregory J M, Hegerl G C, Heimann M, Hewitson B, Hoskins B J, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker T F, Whetton P, Wood R A and Wratt D 2007 Technical summary. In: climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. marquis, K.B. Averyt, M. Tignor and H.L. miller (eds.)]. Cambridge University press, Cambridge, United Kingdom and New York, NY, USA

  42. Stéfanon M, Schindler S, Drobinski P, de Noblet-Ducoudré N, D'Andrea F (2014) Simulating the effect of anthropogenic vegetation land cover on heatwave temperatures over central France. Clim Res 60:133–146. https://doi.org/10.3354/cr01230

    Article  Google Scholar 

  43. Stéfanon M, Drobinski P, D’Andrea F, de Noblet-Ducoudré N (2012b) Effects of interactive vegetation phenology on the 2003 summer heat waves. J Geophys Res 117:D24103. https://doi.org/10.1029/2012JD018187

    Article  Google Scholar 

  44. Stéfanon M, D’Andrea F, Drobinski P (2012a) Heatwave classification over Europe and the Mediterranean region. Environ Res Lett 7:014023. https://doi.org/10.1088/1748-9326/7/1/014023

    Article  Google Scholar 

  45. Stegehuis AI, Vautard R, Ciais P, Teuling AJ, Miralles DG, Wild M (2015) 2015 an observation-constrained multi-physics WRF ensemble for simulating European mega heat waves. Geosci Model Dev 8:2285–2298. https://doi.org/10.5194/gmd-8-2285-2015

    Article  Google Scholar 

  46. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. https://doi.org/10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  47. Xoplaki E, Gonzales-Rouco FJ, Luterbacher J, Wanner H (2003) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20:723–739. https://doi.org/10.1007/s00382-003-0304-x

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment) through INSU-MISTRALS support and the MED-CORDEX program (COordinated Regional climate Downscaling EXperiment - Mediterranean region). It is also a contribution to the cross-cutting activity on sub-daily precipitation of the GEWEX program of the World Climate Research Program (WCRP) (GEWEX Hydroclimate Panel).

Funding

This study is supported by the IPSL group for regional climate and environmental studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe Drobinski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Climate change impacts in the Mediterranean

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drobinski, P., Da Silva, N., Bastin, S. et al. How warmer and drier will the Mediterranean region be at the end of the twenty-first century?. Reg Environ Change 20, 78 (2020). https://doi.org/10.1007/s10113-020-01659-w

Download citation

Keywords

  • Water cycle
  • Warming
  • Dryness
  • Clausius-Clapeyron law
  • Heat lows
  • Regional climate change
  • Human health
  • Europe
  • Mediterranean
  • HyMeX
  • MED-CORDEX