The ‘ecosystem service scarcity path’ to forest recovery: a local forest transition in the Ecuadorian Andes

Abstract

Andean forests decreased in area over the past decade, and communities throughout the Andes are experiencing environmental degradation and soil fertility loss. But amid deforestation, forests returned to some Andean regions, producing local ‘forest transitions’, or net increases in forest cover. The mechanisms that drive these local transitions – often in part the actions of residents – are still little studied, but hold key information for creating successful forest and landscape restoration interventions. This paper investigates cloud forest cover dynamics in Intag, a region in northwest Andean Ecuador where people were actively reforesting by planting trees. We used remote sensing analysis of LANDSAT imagery (from 1991, 2001, and 2010) and household surveys and oral histories with residents of four communities. Results from remote sensing show that prior to reforestation projects (before 2001), deforestation rates were high (> 3%/year). But from 2001 to 2010 forest recovery surpassed deforestation – a local forest transition (net 3% forest cover). But although deforestation rates slowed precipitously (< 2%) people continued to clear forests in the highlands even as forests regrew around communities. This change in clearing rates and spatial redistribution of forest cover reflects people’s reasons for planting trees – to restore water and other key ecosystem services perceive to be ‘scarce’. The results point to a new ‘path’ by which forest transitions occur – the ecosystem service scarcity path – in which local demand for forest ecosystem services drive forest recovery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    The Intag region has been of interest to international mining companies for decades (Bebbington et al. 2008; Kocian et al. 2011; Buchanan 2013). In the early 2000s, communities protested, dismantled a mining exploration camp, and ultimately prevented illegal mining exploration. Community-owned reserves create small areas of land that cannot be sold for development without communal consent, providing a safeguard against mining.

  2. 2.

    Approximately 2.5% per year in Intag compared to the average for Ecuador of 1.2% per year from 1990 to 2000 (FAO 2005).

References

  1. Abram NK, Meijaard E, Ancrenaz M, Runting RK, Wells JA, Gaveau D, Pellier AS, Mengersen K (2014) Spatially explicit perceptions of ecosystem services and land cover change in forested regions of Borneo. Ecosyst Serv 7:116–127. https://doi.org/10.1016/j.ecoser.2013.11.004

    Article  Google Scholar 

  2. Aide TM, Ruiz-Jaen M, Grau H (2010) What is the state of tropical montane cloud forest restoration. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 101–110. https://doi.org/10.1017/CBO9780511778384.010

    Google Scholar 

  3. Aide TM, Clark ML, Grau HR, Lopez-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Núñez MJ, Muniz M (2013) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:262-271. https://doi.org/10.1111/j.1744-7429.2012.00908.x

    Article  Google Scholar 

  4. Angelsen A, Rudel TK (2013) Designing and implementing effective REDD+ policies: a forest transition approach. Rev Environ Econ Policy 7:91–113. https://doi.org/10.1093/reep/res022

    Article  Google Scholar 

  5. Aubad J, Aragón P, Olalla-Tárraga MÁ, Rodríguez MÁ (2008) Illegal logging, landscape structure and the variation of tree species richness across north Andean forest remnants. For Ecol Manag 255:1892–1899. https://doi.org/10.1016/j.foreco.2007.12.011

    Article  Google Scholar 

  6. Balthazar V, Vanacker V, Molina A, Lambin EF (2015) Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol Indic 48:63–75. https://doi.org/10.1016/j.ecolind.2014.07.043

    Article  Google Scholar 

  7. Barlow J, Gardner TA, Araujo IS, Ávila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferreira LV, Hawes J, Hernandez MI (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci 104:18555–18560. https://doi.org/10.1073/pnas.0703333104

    Article  Google Scholar 

  8. Bebbington A, Humphreys Bebbington D, Bury J, Lingan J, Muñoz JP, Scurrah M (2008) Mining and social movements: struggles over livelihood and rural territorial development in the Andes. World Dev 36:2888–2905. https://doi.org/10.2139/ssrn.1265582

    Article  Google Scholar 

  9. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (2008) (eds) (n.d.) Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies: Springer. 198: 15-23. https://doi.org/10.1007/978-3-540-73526-7

  10. Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267. https://doi.org/10.1016/j.tree.2008.01.005

    Article  Google Scholar 

  11. Bonner MT, Schmidt S, Shoo LP (2013) A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For Ecol Manag 291:73–86. https://doi.org/10.1016/j.foreco.2012.11.024

    Article  Google Scholar 

  12. Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915. https://doi.org/10.1007/s10531-010-9936-4

    Article  Google Scholar 

  13. Brooks TM, Mittermeier RA, da Fonseca GA, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues AS (2006) Global biodiversity conservation priorities. Science 313:58–61. https://doi.org/10.1126/science.1127609

    CAS  Article  Google Scholar 

  14. Buchanan KS (2013) Contested discourses, knowledge, and socio-environmental conflict in Ecuador. Environ Sci Pol 30:19–25. https://doi.org/10.1016/j.envsci.2012.12.012

    Article  Google Scholar 

  15. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903. https://doi.org/10.1016/j.rse.2009.01.007

    Article  Google Scholar 

  16. Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460. https://doi.org/10.1126/science.1155365

    CAS  Article  Google Scholar 

  17. Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martınez-Ramos M, Morales H, Nigh R, Soto-Pinto L, van Breugel M (2008) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41:142–153. https://doi.org/10.1111/j.1744-7429.2008.00471.x

    Article  Google Scholar 

  18. Coomes OT, Grimard F, Potvin C, Sima P (2008) The fate of the tropical forest: carbon or cattle? Ecol Econ 65:207–212. https://doi.org/10.1016/j.ecolecon.2007.12.028

    Article  Google Scholar 

  19. de Jong W (2010) Forest rehabilitation and its implication for forest transition theory. Biotropica 42:3–9. https://doi.org/10.1111/j.1744-7429.2009.00568.x

    Article  Google Scholar 

  20. DECOIN (2010) Defensa y Conservation Ecologica de Intag Retrieved 20/12, 2013, from http://www.decoin.org

  21. Dent DH, Wright SJ (2009) The future of tropical species in secondary forests: a quantitative review. Biol Conserv 142:2833–2843. https://doi.org/10.1016/j.biocon.2009.05.035

  22. Duchelle AE (2009) Conservation and livelihood development in Brazil-nut producing communities in a tri-national Amazonian frontier. (dissertation), University of Florida, Gainesville, USA

  23. ENVI (2009) Atmospheric correction module: QUAC and FLAASH User’s guide. ITT Visual Information Solutions, Boulder, CO.

  24. FAO (2005) Global Forest Resources Assessment 2005. Rome: Food and Agriculture Organization of the United Nations (FAO)

  25. FAO (2011) State of The World's Forests 2011. Rome: Food and Agriculture Organization of the United Nations (FAO)

  26. FAO (2015) State of The World's Forests 2011. Rome: Food and Agriculture Organization of the United Nations (FAO)

  27. Farley KA (2007) Grasslands to tree plantations: forest transition in the Andes of Ecuador. Ann Assoc Am Geogr 97:755–771. https://doi.org/10.1111/j.1467-8306.2007.00581.x

    Article  Google Scholar 

  28. Farley KA (2010) Pathways to forest transition: local case studies from the Ecuadorian Andes. J Lat Am Geogr 9:7–26. https://doi.org/10.1353/lag.2010.0011

    Article  Google Scholar 

  29. Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Brühl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545. https://doi.org/10.1016/j.tree.2008.06.012

    Article  Google Scholar 

  30. Foster AD, Rosenzweig MR (2003) Economic growth and the rise of forests. Q J Econ 118:601–637. https://doi.org/10.1162/003355303321675464

    Article  Google Scholar 

  31. Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. J Trop Ecol 16:673–688. https://doi.org/10.1017/S0266467400001644

    Article  Google Scholar 

  32. Gaglio M, Aschonitis VG, Mancuso MM, Puig JPR, Moscoso F, Castaldelli G, Fano EA (2017) Changes in land use and ecosystem services in tropical forest areas: a case study in Andes mountains of Ecuador. IJBESM 13(1):264–279. https://doi.org/10.1080/21513732.2017.1345980

  33. Garen EJ, Saltonstall K, Slusser JL, Mathias S, Ashton MS, Hall JS (2009) An evaluation of farmers' experiences planting native trees in rural Panama: implications for reforestation with native species in agricultural landscapes. Agrofor Syst 76:219–236. https://doi.org/10.1007/s10457-009-9203-4

    Article  Google Scholar 

  34. Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. BioScience 52:143–150. https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2

    Article  Google Scholar 

  35. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJ, Laurance WF, Lovejoy TE (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381. https://doi.org/10.1038/nature10425

    CAS  Article  Google Scholar 

  36. Grainger A (1995) The forest transition: an alternative approach. Area 27:242–251. https://doi.org/10.1111/j.1475-4762.1998.tb00055.x

    Article  Google Scholar 

  37. Grêt-Regamey A, Brunner SH, Kienast F (2012) Mountain ecosystem services: who cares? Mt Res Dev 32(S1):S23–S34. https://doi.org/10.1659/MRD-JOURNAL-D-10-00115.S1

    Article  Google Scholar 

  38. Groom B, Palmer C (2012) REDD+ and rural livelihoods. Biol Conserv 154:42–52. https://doi.org/10.1016/j.biocon.2012.03.002

    Article  Google Scholar 

  39. Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martinez-Ramos M, Morales H, Nigh R, Soto-Pinto L (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22:8–15. https://doi.org/10.1111/j.1523-1739.2007.00863.x

    Article  Google Scholar 

  40. Headley, R. (2010). Landsat—A global land-imaging project: U.S. Geological Survey Fact Sheet 2010–3026 Retrieved 08/22, 2014, from http://pubs.usgs.gov/fs/2010/3026/

  41. Hoch L, Pokorny B, De Jong W (2012) Financial attractiveness of smallholder tree plantations in the Amazon: bridging external expectations and local realities. Agrofor Syst 84:361–375. https://doi.org/10.1007/s10457-012-9480-1

    Article  Google Scholar 

  42. Holl KD (2002) Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. J Appl Ecol 39:960–970. https://doi.org/10.1046/j.1365-2664.2002.00767.x

    Article  Google Scholar 

  43. Jokisch BD, Lair BM (2002) One last stand? Forests and change on Ecuador’s eastern cordillera. Geogr Rev 92:135–156. https://doi.org/10.1111/j.1931-0846.2002.tb00006.x

  44. Kanowski J, Catterall CP, Wardell-Johnson GW (2005) Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. For Ecol Manag 208:359–372. https://doi.org/10.1016/j.foreco.2005.01.018

    Article  Google Scholar 

  45. Kappelle M, Avertin G, Juárez ME, Zamora N (2000) Useful plants within a campesino community in a Costa Rican montane cloud forest. Mt Res Dev 20:162–171. https://doi.org/10.1659/0276-4741(2000)020[0162:UPWACC]2.0.CO;2

    Article  Google Scholar 

  46. Keating PL (1997) Mapping vegetation and anthropogenic disturbances in southern Ecuador with remote sensing techniques: implications for park management. Paper presented at the Yearbook. Conference of Latin Americanist Geographers

  47. Kintz DB, Young KR, Crews-Meyer KA (2006) Implications of land use/land cover change in the buffer zone of a national park in the tropical Andes. Environ Manag 38:238–252. https://doi.org/10.1007/s00267-005-0147-9

    Article  Google Scholar 

  48. Kocian M, Batker D, Harrison-Cox J (2011) An ecological study of Ecuador’s Intag region: the environmental impacts and potential rewards of mining. Earth Economics, Tacoma

    Google Scholar 

  49. Koh LPD, Wilcove S (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64. https://doi.org/10.1111/j.1755-263X.2008.00011.x

    Article  Google Scholar 

  50. Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632. https://doi.org/10.1126/science.1111773

    CAS  Article  Google Scholar 

  51. Laurance WF, Albernaz AKM, Schroth G, Fearnside PM, Bergen S, Venticinque EM, Da Costa C (2002) Predictors of deforestation in the Brazilian Amazon. J Biogeogr 29:737–748. https://doi.org/10.1046/j.1365-2699.2002.00721.x

    Article  Google Scholar 

  52. Lehner B, Verdin K, Jarvis A (2008) New global hydrograhy derived from spaceborne elevation data. Eos, trans. Am Geophys Union 89:93–94. https://doi.org/10.1029/2008EO100001

    Article  Google Scholar 

  53. Liebsch D, Marques M, Goldenberg R (2008) How long does the Atlantic rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol Conserv 141:1717–1725. https://doi.org/10.1016/j.biocon.2008.04.013

    Article  Google Scholar 

  54. Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. John Wiley Sons Ltd., Hoboken

    Google Scholar 

  55. Locatelli B, Lavorel S, Sloan S, Tappeiner U, Geneletti D (2017) Characteristic trajectories of ecosystem services in mountains in a nutshell. Front Ecol Environ 15:150–159. https://doi.org/10.1002/fee.1470

    Article  Google Scholar 

  56. Lugo AE, Helmer E (2004) Emerging forests on abandoned land: Puerto Rico’s new forests. For Ecol Manag 190:145–161. https://doi.org/10.1016/j.foreco.2003.09.012

    Article  Google Scholar 

  57. Mather AS (1992) The Forest Transition. Area 24:367–379

  58. Mather AS, Needle C (1998) The forest transition: a theoretical basis. Area 30:117–124. https://doi.org/10.1111/j.1475-4762.1998.tb00055.x

    Article  Google Scholar 

  59. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. https://doi.org/10.1016/S0169-5347(99)01679-1

    CAS  Article  Google Scholar 

  60. Meyfroidt P, Lambin EF, Erb K-H, Hertel TW (2013) Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr Opin Environ Sustain 5:438–444. https://doi.org/10.1016/j.cosust.2013.04.003

    Article  Google Scholar 

  61. Mitchell MG, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908. https://doi.org/10.1007/s10021-013-9647-2

    Article  Google Scholar 

  62. Munroe DK, Southworth J, Tucker CM (2002) The dynamics of land-cover change in western Honduras: exploring spatial and temporal complexity. Agric Econ 27:355–369. https://doi.org/10.1111/j.1574-0862.2002.tb00125.x

    Article  Google Scholar 

  63. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    CAS  Article  Google Scholar 

  64. Nagendra H (2009) Drivers of regrowth in South Asia’s human impacted forests. Curr Sci 97:1586–1592

    Google Scholar 

  65. Nanni AS, Grau HR (2014) Agricultural adjustment, population dynamics and forests redistribution in a subtropical watershed of NW Argentina. Reg Environ Chang 14:1641–1649

    Article  Google Scholar 

  66. Nelson A, Chomitz K (2007) The Forest–hydrology–poverty Nexus in Central America: an heuristic analysis. Environ Dev Sustain 9:369–385. https://doi.org/10.1596/1813-9450-3430

    Article  Google Scholar 

  67. Paudyal K, Baral H, Putzel L, Bhandari S, Keenan RJ (2017) Change in land use and ecosystem services delivery from community-based forest landscape restoration in the Phewa Lake watershed, Nepal. Int For Rev 4:88–101

    Google Scholar 

  68. Pellissier L, Anzini M, Maiorano L, Dubuis A, Pottier J, Vittoz P, Guisan A (2013) Spatial predictions of land-use transitions and associated threats to biodiversity: the case of forest regrowth in mountain grasslands. Appl Veg Sci 16:227–236. https://doi.org/10.1111/j.1654-109X.2012.01215.x

    Article  Google Scholar 

  69. Perz SG (2007) Grand theory and context-specificity in the study of forest dynamics: forest transition theory and other directions. Prof Geogr 59:105–114. https://doi.org/10.1111/j.1467-9272.2007.00594.x

    Article  Google Scholar 

  70. Perz SG, Skole DL (2003) Secondary forest expansion in the Brazilian Amazon and the refinement of forest transition theory. Soc Nat Resour 16:277–294. https://doi.org/10.1080/08941920309153

    Article  Google Scholar 

  71. Peters, T., T. Drobnik, H. Meyer, M. Rankl, M. Richter, R. Rollenbeck, B. Thies, and J. Bendix. (2013). Environmental changes affecting the Andes of Ecuador. In J. Bendix, E. Beck, A. Bräuning, F. Makeschin, R. Mosandl, S. Scheu W. Wilcke (eds). Ecosystem services, biodiversity and environmental change in a Tropical Mountain ecosystem of South Ecuador. Springer, 19-29. doi: https://doi.org/10.1007/978-3-642-38137-9_2

  72. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291. https://doi.org/10.1126/science.1208742

    CAS  Article  Google Scholar 

  73. Portillo-Quintero CA, Sanchez AM, Valbuena CA, Gonzalez YY, Larreal JT (2012) Forest cover and deforestation patterns in the northern Andes (Lake Maracaibo Basin): a synoptic assessment using MODIS and Landsat imagery. Appl Geogr 35:152–163. https://doi.org/10.1016/j.apgeog.2012.06.015

    Article  Google Scholar 

  74. Reardon T, Vosti SA (1995) Links between rural poverty and the environment in developing countries: asset categories and investment poverty. World Dev 23:1495–1506. https://doi.org/10.1016/0305-750X(95)00061-G

    Article  Google Scholar 

  75. Redo DJ, Grau HR, Aide TM, Clark ML (2012) Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc Natl Acad Sci 109:8839–8844. https://doi.org/10.1073/pnas.1201664109

    Article  Google Scholar 

  76. Rhemtulla JM, Mladenoff DJ, Clayton MK (2007) Regional land-cover conversion in the US upper Midwest: magnitude of change and limited recovery (1850–1935–1993). Landsc Ecol 22:57–75. https://doi.org/10.1007/s10980-007-9117-3

    Article  Google Scholar 

  77. Rudel TK (2009) Three paths to Forest expansion: a comparative historical analysis. In: Nagendra JSH (ed) Reforesting Landscapes Linking Pattern and Process. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9656-3_3

    Google Scholar 

  78. Rudel TK, Bates D, Machinguiashi R (2002) A tropical forest transition? Agricultural change, out-migration, and secondary forests in the Ecuadorian Amazon. Ann Assoc Am Geogr 92:87–102. https://doi.org/10.1111/1467-8306.00281

    Article  Google Scholar 

  79. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Glob Environ Chang 15:23–31. https://doi.org/10.1016/j.gloenvcha.2004.11.001

    Article  Google Scholar 

  80. Sánchez-Cuervo AM, Aide TM, Clark ML, Etter A (2012) Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PloS One 7:e43943. https://doi.org/10.1371/journal.pone.0043943

    CAS  Article  Google Scholar 

  81. Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines: naturalness, agriculture and the human dimension. Mt Res Dev 22:278–287. https://doi.org/10.1659/0276-4741(2002)022[0278:ACFTL]2.0.CO;2

    Article  Google Scholar 

  82. Schelhas J, Sánchez-Azofeifa GA (2006) Post-frontier forest change adjacent to Braulio Carrillo National Park, Costa Rica. Hum Ecol 34:407–431. https://doi.org/10.1007/~10745-006-9024-2

    Article  Google Scholar 

  83. Schmook B, Palmer Dickson R, Sangermano F, Vadjunec JM, Eastman JR, Rogan J (2011) A step-wise land-cover classification of the tropical forests of the southern Yucatán, Mexico. Int J Remote Sens 32:1139–1164. https://doi.org/10.1080/01431160903527413

    Article  Google Scholar 

  84. Shvidenko A, Barber C, Persson R (2005) Forest and woodland systems

  85. Silver WL, Kueppers LM, Lugo AE, Ostertag R, Matzek V (2004) Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecol Appl 14:1115–1127. https://doi.org/10.1890/03-5123

    Article  Google Scholar 

  86. Sloan S (2008) Reforestation amidst deforestation: simultaneity and succession. Glob Environ Chang 18:425–441. https://doi.org/10.1016/j.gloenvcha.2008.04.009

    Article  Google Scholar 

  87. Vallet A, Locatelli B, Levrel H, Pérez CB, Imbach P, Carmona NE, Manlay R, Oszwald J (2016) Dynamics of ecosystem services during forest transitions in Reventazón, Costa Rica. PloS One 11(7):e0158615. https://doi.org/10.1371/journal.pone.0158615

    CAS  Article  Google Scholar 

  88. Wilson, S (2015) Replanting a Future: Restoring cloud forest, biodiversity and rural livelihoods in Andean Ecuador. PhD Thesis, McGill University

  89. Wilson SJ, Coomes OT (2019) ‘Crisis restoration’ in post-frontier tropical environments: replanting cloud forests in the Ecuadorian Andes. J Rural Stud 67:152–165

    Article  Google Scholar 

  90. Wilson SJ, Rhemtulla J (2016) Community-based tree planting accelerates forest recovery but creates novel forests in Andean Ecuador. Ecol Appl 26:203–218. https://doi.org/10.1890/14-2129

    Article  Google Scholar 

  91. Wilson SJ, Rhemtulla J (2018) Small montane cloud forest fragments are important for conserving tree diversity in the Ecuadorian Andes. Biotropica 50:586–597

  92. Wilson SJ, Schelhas J, Grau R, Sofia Nanni A, Sloan S (2017) Forest ecosystem-servicetransitions: the ecological dimensions of the forest transition. Ecol Soc 22:38. https://doi.org/10.5751/ES-09615-220438

    Article  Google Scholar 

  93. Wunder S (1996) Deforestation and the uses of wood in the Ecuadorian Andes. Mt Res Dev 16:367–381. https://doi.org/10.2307/3673987 ctic, Antarctic, and Alpine Research, 33: 165–172

    Article  Google Scholar 

  94. Zhai D-L, Xu J-C, Dai Z-C, Cannon CH, Grumbine R (2014) Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Reg Environ Chang 14:611–621. https://doi.org/10.1007/s10113-013-0512-9

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank McGill University’s Geographic Information Centre (GIC) for assistance with remote sensing analysis; Miriam Harder, Silvana Bolanos, Alonzo Andrengo, and Carmen Navarette for field assistance; Jake Brennan for his assistance with interviews and constructive comments; Carlos Zorilla of DECOIN, Joseph de Coux of the Los Cedros Reserve, and Ana Mariscal of Fundacion Cambugan for their help with fieldwork logistics and information; botanists Miguel Angel Chinchero, Jenny Elizabeth Correa, Gabriela Cruz, and Carlos Morales for their help in the field and lab; and Jeanine Rhemtulla, Brian Robinson, Sylvia Wood, Ignacia Holmes, and Aerin Jacob for their insightful comments on results and earlier versions of this article. This study was funded by the International Development and Research Centre (IDRC), the National Science and Engineering Council of Canada (NSERC), the Fonds de Recherche du Québec – Nature et technologies (FQRNT), and the Theo Hills Family.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah Jane Wilson.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor: Nicolas Dendoncker.

Electronic supplementary material

ESM 1

(DOCX 99 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, S.J., Coomes, O.T. & Dallaire, C.O. The ‘ecosystem service scarcity path’ to forest recovery: a local forest transition in the Ecuadorian Andes. Reg Environ Change 19, 2437–2451 (2019). https://doi.org/10.1007/s10113-019-01544-1

Download citation

Keywords

  • Andes
  • Forest transition
  • Cloud forest
  • Forest landscape restoration
  • Forest ecosystem services