Skip to main content

Advertisement

Log in

Recent evolution of damage to infrastructure on permafrost in the French Alps

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The past four decades have seen extensive development of the winter sport industry in the French Alps and several hundred ropeway transport systems have been installed in areas where mountain permafrost may be present. Due to current climatic change and the ensuing permafrost degradation, the vulnerability of these infrastructures to destabilization may increase. Therefore, there is a real potential for instabilities to develop on ropeway transport systems in the Alps, requiring a better understanding of these processes. This study investigates the relation between permafrost and infrastructure stability in the French Alps, seeking to understand the evolution of this phenomenon over the past decades. This was done by following a two-step analysis. At first, the infrastructure elements built on modeled permafrost-affected areas were inventoried at the scale of the French Alps in order to get an overview of the possible vulnerabilities. Then, our study presents a detailed historical inventory of damage to infrastructure over the past three decades in different geomorphologic contexts. Overall, in the French Alps, there are almost 1000 infrastructure elements located in permafrost areas among which 12 (i.e., 24 infrastructure elements) were identified to have been subject to repeated instances of disruption and deterioration and most of the damages recorded were in areas where permafrost degradation is fully expected (ice-rich terrain). Infrastructure recovery costs may be significantly high, making this issue a relevant consideration to be included in the design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amourous C (2000) L’implantation du ski alpin dans les Alpes françaises : la tradition étayage de la modernité. Rev Géographie Alp 88:9–20. https://doi.org/10.3406/rga.2000.3007

    Article  Google Scholar 

  • Arenson LU, Jakob M (2017) Permafrost-related geohazards and infrastructure construction in mountainous environments. Oxf Res Encycl Nat Hazard Sci 30. doi: https://doi.org/10.1093/acrefore/9780199389407.013.292

  • Arenson L, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafrost Periglac Process 13:117–135. https://doi.org/10.1002/ppp.414

    Article  Google Scholar 

  • Arenson LU, Springman SM, Sego DC (2007) The rheology of frozen soils. Appl Rheol 17:12147. https://doi.org/10.3933/ApplRheol-17-12147

    Article  Google Scholar 

  • Arenson LU, Phillips M, Springman SM (2009) Geotechnical consideration and technical solutions for infrastructure in mountain permafrost. In Krugger, M.I. and H.P. Stern, eds. New permafrost and glacier research. Hauppauge, NY, Nova, 3–50

  • Beniston M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys 162:1587–1606. https://doi.org/10.1007/s00024-005-2684-9

    Article  Google Scholar 

  • Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E, Eckert N, Fantini A, Giacona F, Hauck C, Huss M, Huwald H, Lehning M, López-Moreno JI, Magnusson J, Marty C, Morán-Tejéda E, Morin S, Naaim M, Provenzale A, Rabatel A, Six D, Stötter J, Strasser U, Terzago S, Vincent C (2018) The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12:759–794. https://doi.org/10.5194/tc-12-759-2018

    Article  Google Scholar 

  • Bodin X, Thibert E, Fabre D, Ribolini A, Schoeneich P, Francou B, Reynaud L, Fort M (2009) Two decades of responses (1986–2006) to climate by the Laurichard rock glacier. French Alps Permafrost Periglac Process 20:331–344. https://doi.org/10.1002/ppp.665

    Article  Google Scholar 

  • Bodin X, Desvarreux P, Fabre D, Krysiecki JM, Gay M, Marie R, Lorier L, Schoeneich P, Vallon M (2010) Analyse des risques induits par la dégradation du permafrost alpin. Projet Fondation MAIF, Rapport final

  • Bodin X, Schoeneich P, Deline P, Ravanel L, Magnin F, Krysiecki JM, Echelard T (2015) Mountain permafrost and associated geomorphological processes: recent changes in the French Alps. Rev Geogr Alp 103-2. doi:https://doi.org/10.4000/rga.2885

  • Bodin X, Krysiecki JM, Schoeneich P, Le Roux O, Lorier L, Echelard T, Peyron M, Walpersdorf A (2017) The 2006 collapse of the Bérard rock glacier (southern French Alps). Permafr Periglac Process 28:209–223. https://doi.org/10.1002/ppp.1887

    Article  Google Scholar 

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere 6:807–820. https://doi.org/10.5194/tc-6-807-2012

    Article  Google Scholar 

  • Bommer C, Phillips M, Arenson LU (2010a) Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafr Periglac Process 21:97–104. https://doi.org/10.1002/ppp.679

    Article  Google Scholar 

  • Bommer C, Phillips M, Keusen H-R, Teysseire P (2010b) Construire sur le pergélisol: guide pratique. Institut fédéral de recherches sur la forêt, la neige et le paysage. WSL, Birmensdorf

    Google Scholar 

  • Boyle J, Cunningham M, Dekens J (2013) Climate Change Adaptation and Canadian Infrastructure. A review of the literature. International Institute for Sustainable Development (IISD), Winnipeg

    Google Scholar 

  • Davies MCR, Hamza O, Harris C (2001) The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafr Periglac Process 12:137–144. https://doi.org/10.1002/ppp.378

    Article  Google Scholar 

  • Dobinski W (2011) Permafrost. Earth Sci Rev 108:158–169. https://doi.org/10.1016/j.earscirev.2011.06.007

    Article  Google Scholar 

  • Domaines Skiables de France (2018) Indicateurs et analyse 2018. Observatoire, Rapport annuel

  • Duvillard PA, Ravanel L, Deline P (2015) Risk assessment of infrastructure destabilisation due to global warming in the high French Alps. Rev Geogr Alp 103-2. doi:https://doi.org/10.4000/rga.2896

  • Duvillard PA, Revil A, Qi Y, Soueid Ahmed A, Coperey A, Ravanel L (2018) Three-dimensional electrical conductivity and induced polarization tomography of a rock glacier. J Geophys Res Solid Earth 123:9528–9554. https://doi.org/10.1029/2018JB015965

    Article  Google Scholar 

  • Duvillard PA, Ravanel L, Schoeneich P, Marcer M, Piard JF (accepted) Analyse multi-méthodes de la déstabilisation d’un pylône de remontée mécanique implanté sur un glacier rocheux des Alpes françaises. Géomorphologie, Relief, Processus, Environnement

  • Einhorn B, Eckert N, Chaix C, Ravanel L, Deline P, Gardent M, Boudières V, Richard D, Vengeon JM, Giraud G, Schoeneich P (2015) Climate change and natural hazards in the Alps. J Alpine Res 103-2. doi: https://doi.org/10.4000/rga.2878

  • Fabre D, Cadet H, Lorier L, Leroux O (2015) Detection of permafrost and foundation related problems in High Mountain ski resorts. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, Cham, pp 321–324. https://doi.org/10.1007/978-3-319-09300-0_60

    Chapter  Google Scholar 

  • Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nat Geosci 9:584–589. https://doi.org/10.1038/ngeo2761

    Article  CAS  Google Scholar 

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151. https://doi.org/10.1016/j.scitotenv.2013.07.050

    Article  CAS  Google Scholar 

  • Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233. https://doi.org/10.5194/tc-6-221-2012

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112. doi:https://doi.org/10.1029/2006JF000547

  • Haeberli W (1992) Construction, environmental problems and natural hazards in periglacial mountain belts. Permafr Periglac Process 3:111–124. https://doi.org/10.1002/ppp.3430030208

    Article  Google Scholar 

  • Haeberli W (2013) Mountain permafrost, research frontiers and a special long-term challenge. Cold Reg Sci Technol 96:71–76. https://doi.org/10.1016/j.coldregions.2013.02.004

    Article  Google Scholar 

  • Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265 http://www.jstor.org/stable/4314732

    Google Scholar 

  • Haeberli W, Gruber S (2009) Global warming and mountain permafrost. In: Margesin R (ed) Permafrost soils. Springer Berlin Heidelberg, Berlin, pp 205–218. https://doi.org/10.1007/978-3-540-69371-0_14

    Chapter  Google Scholar 

  • Haeberli W, Schaub Y, Huggel C (2017) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293:405–417. https://doi.org/10.1016/j.geomorph.2016.02.009

    Article  Google Scholar 

  • Harris C, Davies MCR, Etzelmüller B (2001) The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafr Periglac Process 12:145–156. https://doi.org/10.1002/ppp.376

    Article  Google Scholar 

  • Harris C, VonderMühll D, Isaksen K, Haeberli W, Sollid JL, King L, Holmlund P, Dramis F, Guglielmin M, Palacios D (2003) Warming permafrost in European mountains. Glob Planet Change 39:215–225. https://doi.org/10.1016/j.gloplacha.2003.04.001

    Article  Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Nötzli J, Phillips M, Ross N, Seppälä M, Springman SM, Vonder Mühll D (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci Rev 92:117–171. https://doi.org/10.1016/j.earscirev.2008.12.002

    Article  CAS  Google Scholar 

  • Hjort J, Karjalainen O, Aalto J, Westermann S, Romanovsky VE, Nelson FE, Etzelmüller B, Luoto M (2018) Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat Commun 9:5147. https://doi.org/10.1038/s41467-018-07557-4

    Article  CAS  Google Scholar 

  • Hoelzle M, Wegmann M, Krummenacher B (1999) Miniature temperature dataloggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps. Permafr Periglac Process 10:113–124. https://doi.org/10.1002/(SICI)1099-1530(199904/06)10:2<113::AID-PPP317>3.0.CO;2-A

    Article  Google Scholar 

  • Höfer-Öllinger G, Keuschnig M, Krautblatter M, Schober A (2015) Climate change impacts on high alpine infrastructure: an example from the Kitzsteinhorn (3200 m), Salzburg, Austria. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, Cham, pp 301–303. https://doi.org/10.1007/978-3-319-09300-0_56

    Chapter  Google Scholar 

  • Ikeda A, Matsuoka N, Kääb A (2008) Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: an effect of liquid water. J Geophys Res Earth Surf 113. doi:https://doi.org/10.1029/2007jf000859

  • Instanes A (2016) Incorporating climate warming scenarios in coastal permafrost engineering design – case studies from Svalbard and Northwest Russia. Cold Reg Sci Technol 131:76–87. https://doi.org/10.1016/j.coldregions.2016.09.004

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324,2013

  • Kenner R, Phillips M, Beutel J, Hiller M, Limpach P, Pointner E, Volken M (2017) Factors controlling velocity variations at short-term, seasonal and multiyear time scales, Ritigraben rock glacier, western Swiss Alps. Permafr Periglac Process 28:675–684. https://doi.org/10.1002/ppp.1953

    Article  Google Scholar 

  • Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surf Process Landf 38:876–887. https://doi.org/10.1002/esp.3374

    Article  Google Scholar 

  • Larsen PH, Goldsmith S, Smith O, Wilson ML, Strzepek K, Chinowsky P, Saylor B (2008) Estimating future costs for Alaska public infrastructure at risk from climate change. Glob Environ Chang 18:442–457. https://doi.org/10.1016/j.gloenvcha.2008.03.005

    Article  Google Scholar 

  • Luethi R, Phillips M (2016) Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpretation. Geogr Helvetica 71:121–131. https://doi.org/10.5194/gh-71-121-2016

    Article  Google Scholar 

  • Luethi R, Phillips M, Lehning M (2017) Estimating non-conductive heat flow leading to intra-permafrost talik formation at the Ritigraben rock glacier (Western Swiss Alps): estimating non-conductive heat flow. Permafr Periglac Process 28:183–194. https://doi.org/10.1002/ppp.1911

    Article  Google Scholar 

  • Magnin F, Deline P, Ravanel L, Noetzli J, Pogliotti P (2015a) Thermal characteristics of permafrost in the steep alpine rock walls of the aiguille du Midi (Mont Blanc massif, 3842 m a.S.L). Cryosphere 9:109–121. https://doi.org/10.5194/tc-9-109-2015

    Article  Google Scholar 

  • Magnin F, Brenning A, Bodin X, Deline P, Ravanel L (2015b) Modélisation statistique de la distribution du permafrost de paroi: application au massif du Mont Blanc. Géomorphologie Relief Process Environ 21:145–162. https://doi.org/10.4000/geomorphologie.10965

    Article  Google Scholar 

  • Magnin F, Westermann S, Pogliotti P, Ravane L, Deline P, Malet E (2017) Snow control on active layer thickness in steep alpine rock walls (aiguille du Midi, 3842ma.S.L., Mont Blanc massif). Catena 149:648–662. https://doi.org/10.1016/j.catena.2016.06.006

    Article  Google Scholar 

  • Marcer M, Bodin X, Brenning A, Schoeneich P, Charvet R, Gottardi F (2017) Permafrost favorability index : spatial modelling in the French Alps using rock glaciers inventory. Front Earth Sci 5. https://doi.org/10.3389/feart.2017.00105

  • Marty C, Schlögl S, Bavay M, Lehning M (2017) How much can we save? Impact of different emission scenarios on future snow cover in the Alps. Cryosphere 11:517–529. https://doi.org/10.5194/tc-11-517-2017

    Article  Google Scholar 

  • Melvin AM, Larsen P, Boehlert B, Neumann JE, Chinowsky P, Espinet X, Martinich J, Baumann MS, Rennels L, Bothner A, Nicolsky DJ, Marchenko SS (2017) Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc Natl Acad Sci 114:E122–E131. https://doi.org/10.1073/pnas.1611056113

    Article  CAS  Google Scholar 

  • O’Neill HB, Burn CR (2017) Impacts of variations in snow cover on permafrost stability, including simulated snow management, Dempster highway, Peel plateau, Northwest Territories. Arctic Sci 3:150–178. https://doi.org/10.1139/as-2016-0036

    Article  Google Scholar 

  • PERMOS (2016) Permafrost in Switzerland 2010/2011 to 2013/2014. In J. Noetzli, R. Luethi, & B. Staub (Eds.), Glaciological Report Permafrost No. 12–15 of the Cryospheric Commission of the Swiss Academy of Sciences Fribourg, 85 pp

  • Phillips M (2006) Avalanche defence strategies and monitoring of two sites in mountain permafrost terrain, Pontresina, eastern Swiss Alps. Nat Hazards 39:353–379. https://doi.org/10.1007/s11069-005-6126-x

    Article  Google Scholar 

  • Phillips M, Ladner F, Müller M, Sambeth U, Sorg J, Teysseire P (2007) Monitoring and reconstruction of a chairlift midway station in creeping permafrost terrain, Grächen, Swiss Alps. Cold Reg Sci Technol 47:32–42. https://doi.org/10.1016/j.coldregions.2006.08.014

    Article  Google Scholar 

  • Piazza M, Boé J, Terray L, Pagé C, Sanchez-Gomez E, Déqué M (2014) Projected 21st century snowfall changes over the French Alps and related uncertainties. Clim Chang 122:583–594. https://doi.org/10.1007/s10584-013-1017-8

    Article  Google Scholar 

  • Pogliotti P, Guglielmin M, Cremonese E, Morra di Cella U, Filippa G, Pellet C, Hauck C (2015) Warming permafrost and active layer variability at Cime Bianche, Western European Alps. Cryosphere 9:647–661. https://doi.org/10.5194/tc-9-647-2015

    Article  Google Scholar 

  • Pröbstl-Haider U, Dabrowska K, Haider W (2016) Risk perception and preferences of mountain tourists in light of glacial retreat and permafrost degradation in the Austrian Alps. Risk Outdoor Recreat Nat Based Tour 13:66–78. https://doi.org/10.1016/j.jort.2016.02.002

    Article  Google Scholar 

  • Ravanel L, Deline P (2010) Climate influence on rockfalls in high-alpine steep rockwalls: the north side of the aiguilles de Chamonix (Mont Blanc massif) since the end of the “little ice age”. The Holocene 21:357–365. https://doi.org/10.1177/0959683610374887

    Article  Google Scholar 

  • Ravanel L, Deline P, Lambiel C, Vincent C (2013) Instability of a high alpine rock ridge: the lower arête des cosmiques, mont blanc massif, France. Geogr Ann Ser B 95:51–66. https://doi.org/10.1111/geoa.12000

    Article  Google Scholar 

  • Ravanel L, Deline P, Lambiel C, Duvillard P-A (2015) Stability monitoring of high alpine infrastructure by terrestrial laser scanning. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, Cham, pp 169–172. https://doi.org/10.1007/978-3-319-09300-0_32

    Chapter  Google Scholar 

  • Ravanel L, Magnin F, Deline P (2017) Impacts of the 2003 and 2015 summer heat waves on permafrost-affected rockwalls in the Mont Blanc massif. Sci Total Environ 609:132–143. https://doi.org/10.1016/j.scitotenv.2017.07.055

    Article  CAS  Google Scholar 

  • Ravanel L, Duvillard PA, Jaboyedoff M, Lambiel C (2018) Recent evolution of an ice-cored moraine at the Gentianes pass, Valais Alps, Switzerland. Land Degrad Dev 29(10):3693–3708. https://doi.org/10.1002/ldr.3088

    Article  Google Scholar 

  • Rixen C, Haeberli W, Stoeckli V (2004) Ground temperatures under ski Pistes with artificial and natural snow. Arct Antarct Alp Res 36:419–427. https://doi.org/10.1657/15230430(2004)036[0419:GTUSPW]2.0.CO;2

  • Rödder T, Kneisel C (2012) Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 175–176:176–189. https://doi.org/10.1016/j.geomorph.2012.07.008

    Article  Google Scholar 

  • Scherrer SC, Fischer EM, Posselt R, Liniger MA, Croci-Maspoli M, Knutti R (2016) Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J Geophys Res Atmos 121:2626–2637. https://doi.org/10.1002/2015jd024634

    Article  Google Scholar 

  • Schoeneich P, Dall’Amico M, Deline P, Zischg A (2011) Hazards related to permafrost and to permafrost degradation. PermaNET project, state-of-the-art report 6.2. On-line publication ISBN 978–2–903095-59-8

  • Schoeneich P, Bodin X, Echelard T, Kaufmann V, Kellerer-Pirklbauer A, Krysiecki JM, Lieb GK (2015) Velocity changes of rock glaciers and induced hazards. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, pp 223–227. doi:https://doi.org/10.1007/978-3-319-09300-0_42

  • Shiklomanov NI, Streletskiy DA, Swales TB, Kokorev VA (2017) Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections. Geogr Rev 107:125–142. https://doi.org/10.1111/gere.12214

    Article  Google Scholar 

  • Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geogr 36:421–439. https://doi.org/10.1177/0309133312441010

    Article  Google Scholar 

  • Zhou X, Buchli T, Kinzelbach W, Stauffer F, Springman SM (2015) Analysis of thermal behaviour in the active layer of degrading mountain permafrost: thermal behaviour in the active layer of degrading mountain permafrost. Permafr Periglac Process 26:39–56. https://doi.org/10.1002/ppp.1827

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the operators and managers of the infrastructure that has been included in the study, for all the information they have provided. We also thank the four Master’s degree students and T. Echelard who have made extensive contributions to the damage documentation work (Y. Bertel, P. Ustache, J. Vella and G. Weible). Thanks also to Neil Brodie and Hilary Dyer for improving the English. Finally, we would like to thank the reviewers and editors M. Phillips and C. Huggel for their helpful and critical review to improve the quality of the paper. This study was conducted with the help of Domaine Skiable de France and Cluster Montagne.

Funding

P.-A. Duvillard’s PhD fellowship was supported by a grant from Ingénierie des Mouvements du Sol et des Risques Naturels (IMSRN) and the Association Nationale de la Recherche et de la Technologie (ANRt). The work is part of the EU POIA PermaRisk project, co-funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Allain Duvillard.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duvillard, PA., Ravanel, L., Marcer, M. et al. Recent evolution of damage to infrastructure on permafrost in the French Alps. Reg Environ Change 19, 1281–1293 (2019). https://doi.org/10.1007/s10113-019-01465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-019-01465-z

Keywords

Navigation