Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil

Abstract

We estimated carbon dioxide (CO2) and methane (CH4) emissions by diffusion, ebullition, and degassing in turbines from a semi-arid hydropower reservoir in northeastern Brazil. Sampling sites were allocated within the littoral and deeper waters of one embayment, the main-stream, and at turbines. Annual carbon emissions were estimated at 2.3 × 105 ± 7.45 × 104 t C year−1, or in CO2-equivalents (CO2-eq) at 1.33 × 106 ± 4.5 × 105 t CO2-eq year−1. Diffusion across the water surface was the main pathway accounting for 96% of total carbon emissions. Ebullition was limited to littoral areas. A slight accumulation of CO2, but not of CH4, in bottom waters close to the turbines inlet led to degassing emissions about 8 × 103 t C year−1. Emissions in littoral areas were higher than in main-stream and contribute to 40% of the total carbon. Carbon (C) emissions per electricity generated, at 60% of installed capacity, is 0.05 t C-CO2-eq MWh−1. The ratio increases to 0.09 t C-CO2 MWh−1, equating 80% of the emissions from natural gas and 40% of diesel or coal power plants. Retention time and benthic metabolism were identified as main drivers for carbon emissions in littoral areas, while water column mixing and rapid water flow are important factors preventing CH4 accumulation and loss by degassing. Our results indicate that Itaparica Reservoir, located in the semi-arid region of Northeastern Brazil, acts as a source of GHGs. Management measurements are needed to prevent emissions to raise in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abril G, Guerin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycle 19:GB 4007. https://doi.org/10.1029/2005gb002457

    Article  Google Scholar 

  2. Almeida RM, Nobrega GN, Junger PC, Figueiredo AV, Andrade AS, de Moura CG, Tonetta D, Oliveira ES Jr, Araujo F, Rust F, Pineiro-Guerra JM, Mendonca JR Jr, Medeiros LR, Pinheiro L, Miranda M, Costa MR, Melo ML, Nobre RL, Benevides T, Roland F, de Klein J, Barros NO, Mendonca R, Becker V, Huszar VL, Kosten S (2016) High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Front Microbiol 7:717. https://doi.org/10.3389/fmicb.2016.00717

    Article  Google Scholar 

  3. Araújo Filho JC, Gunkel G, Sobral M, Kaupenjohann M, Lopes HL (2013) Soil attributes functionality and water eutrophication in the surrounding area of Itaparica Reservoir, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 17(9):1005–1013. https://doi.org/10.1590/S1415-43662013000900014

    Article  Google Scholar 

  4. Barbosa JEL, Medeiros ESF, Brasil J, Cordeiro RS, Crispim MCB, Silva GHG (2012) Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnol Bras 24(1):103–118. https://doi.org/10.1590/S2179-975X2012005000030

    Article  Google Scholar 

  5. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4(9):593–596. https://doi.org/10.1038/ngeo1211

    CAS  Article  Google Scholar 

  6. Bastien J, Demarty M (2013) Spatio-temporal variation of gross CO2 and CH4 diffusive emissions from Australian reservoirs and natural aquatic ecosystems, and estimation of net reservoir emissions. Lakes Reserv Res Manag 18(2):115–127. https://doi.org/10.1111/lre.12028

    CAS  Article  Google Scholar 

  7. Bastviken D, Santoro AL, Marotta H, Pinho LQ, Calheiros DF, Crill P, Enrich-Prast A (2010) Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environ Sci Technol 44(14):5450–5455. https://doi.org/10.1021/es1005048

    CAS  Article  Google Scholar 

  8. Cardoso SJ, Vidal LO, Mendonca RF, Tranvik LJ, Sobek S, Fabio R (2013) Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir. Front Microbiol 4:101. https://doi.org/10.3389/fmicb.2013.00101

    CAS  Article  Google Scholar 

  9. Casper P, Chan OC, Furtado ALS, Adams DD (2003) Methane in an acidic bog lake: the influence of peat in the catchment on the biogeochemistry of methane. Aquat Sci 65(1):36–46. https://doi.org/10.1007/s000270300003

    CAS  Article  Google Scholar 

  10. Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Serca D, Guerin F (2011) Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci Total Environ 409(24):5382–5391. https://doi.org/10.1016/j.scitotenv.2011.09.018

    CAS  Article  Google Scholar 

  11. CHESF (2016) Portal Corporativo da CHESF. CHESF. https://www.chesf.gov.br/SistemaChesf/Pages/SistemaGeracao/LuizGonzaga.aspx. Accessed 17.09 2016

  12. Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43(4):647–656. https://doi.org/10.4319/lo.1998.43.4.0647

    CAS  Article  Google Scholar 

  13. Cole JJ, Bade DL, Bastviken D, Pace ML, Van de Bogert M (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr-Meth 8(6):285–293. https://doi.org/10.4319/lom.2010.8.285

    CAS  Article  Google Scholar 

  14. da Cunha-Santino MB, Bianchini I (2013) Tropical macrophyte degradation dynamics in freshwater sediments: relationship to greenhouse gas production. J Soils Sediments 13(8):1461–1468. https://doi.org/10.1007/s11368-013-0735-x

    CAS  Article  Google Scholar 

  15. Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66(11):949–964. https://doi.org/10.1093/biosci/biw117

    Article  Google Scholar 

  16. DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44(7):2419–2425. https://doi.org/10.1021/es9031369

    CAS  Article  Google Scholar 

  17. DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45(23):9866–9873. https://doi.org/10.1021/es2005545

    CAS  Article  Google Scholar 

  18. Deshmukh C, Serça D, Delon C, Tardif R, Demarty M, Jarnot C, Meyerfeld Y, Chanudet V, Guédant P, Rode W (2014) Physical controls on CH4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences 11(15):4251–4269. https://doi.org/10.5194/bg-11-4251-2014

    CAS  Article  Google Scholar 

  19. Deshmukh C, Guérin F, Labat D, Pighini S, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Serça D (2016) Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences 13(6):1919–1932. https://doi.org/10.5194/bg-13-1919-2016

    CAS  Article  Google Scholar 

  20. Diem T, Koch S, Schwarzenbach S, Wehrli B, Schubert CJ (2012) Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines. Aquat Sci 74(3):619–635. https://doi.org/10.1007/s00027-012-0256-5

    CAS  Article  Google Scholar 

  21. Dos Santos MA, Rosa LP, Sikar B, Sikar E, Dos Santos EO (2006) Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34(4):481–488. https://doi.org/10.1016/j.enpol.2004.06.015

    Article  Google Scholar 

  22. Durisch-Kaiser E, Schmid M, Peeters F, Kipfer R, Dinkel C, Diem T, Schubert CJ, Wehrli B (2011) What prevents outgassing of methane to the atmosphere in Lake Tanganyika? J Geophys Res-Biogeosci 116:G02022. https://doi.org/10.1029/2010jg001323

    Article  Google Scholar 

  23. Fearnside P (2013) Carbon credit for hydroelectric dams as a source of greenhouse-gas emissions: the example of Brazil’s Teles Pires Dam. Mitig Adapt Strat Glob Change:1–9 https://doi.org/10.1007/s11027-012-9382-6

  24. Fearnside PM (2015) Emissions from tropical hydropower and the IPCC. Environ Sci Pol 50:225–239. https://doi.org/10.1016/j.envsci.2015.03.002

    Article  Google Scholar 

  25. Galy-Lacaux C, Delmas R, Jambert C, Dumestre JF, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cycle 11(4):471–483. https://doi.org/10.1029/97GB01625

    CAS  Article  Google Scholar 

  26. Galy-Lacaux C, Delmas R, Kouadio G, Richard S, Gosse P (1999) Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Glob Biogeochem Cycle 13(2):503–517. https://doi.org/10.1029/1998gb900015

    CAS  Article  Google Scholar 

  27. Glissman K, Chin K-J, Casper P, Conrad R (2004) Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb Ecol 48(3):389–399. https://doi.org/10.1007/s00248-003-2027-2

    CAS  Article  Google Scholar 

  28. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305):478–481. https://doi.org/10.1038/nature09186

    CAS  Article  Google Scholar 

  29. Guérin F, Abril G (2007) Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J Geophys Res-Biogeosci 112(G3). https://doi.org/10.1029/2006JG000393

  30. Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R (2006) Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett 33(21):L21407. https://doi.org/10.1029/2006gl027929

    Article  Google Scholar 

  31. Guérin F, Deshmukh C, Labat D, Pighini S, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Serça D (2016) Effect of sporadic destratification, seasonal overturn, and artificial mixing on CH4 emissions from a subtropical hydroelectric reservoir. Biogeosciences 13(12):3647–3663. https://doi.org/10.5194/bg-13-3647-2016

    CAS  Article  Google Scholar 

  32. Gunkel G (2009) Hydropower—a green energy? Tropical reservoirs and greenhouse gas emissions. Clean-Soil Air Water 37(9):726–734. https://doi.org/10.1002/clen.200900062

    CAS  Article  Google Scholar 

  33. Hofmann H, Federwisch L, Peeters F (2010) Wave-induced release of methane: littoral zones as source of methane in lakes. Limnol Oceanogr 55(5):1990–2000. https://doi.org/10.4319/lo.2010.55.5.1990

    CAS  Article  Google Scholar 

  34. Intergovernmental Panel on Climate Change (IPCC) (2007) Summary for policy makers. In: Solomon S et al (eds) Climate change 2007. The physical science basis. Contribution of Working Groups I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  35. Ji Y, Angel R, Klose M, Claus P, Marotta H, Pinho L, Enrich-Prast A, Conrad R (2016) Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types. Environ Microbiol 18(12):5082–5100. https://doi.org/10.1111/1462-2920.13491

    CAS  Article  Google Scholar 

  36. Keller M, Stallard RF (1994) Methane emission by bubbling from Gatun Lake, Panama. J Geophys Res-Atmos 99(D4):8307–8319. https://doi.org/10.1029/92jd02170

    CAS  Article  Google Scholar 

  37. Kemenes A, Forsberg BR, Melack JM (2011) CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). J Geophys Res-Biogeosci 116(G3):G03004. https://doi.org/10.1029/2010jg001465

    Article  Google Scholar 

  38. López Bellido J, Tulonen T, Kankaala P, Ojala A (2009) CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Pääjärvi, southern Finland). J Geophys Res-Biogeosci 114(G4). https://doi.org/10.1029/2009JG000923

  39. Maberly SC, Barker PA, Stott AW, De Ville MM (2013) Catchment productivity controls CO2 emissions from lakes. Nat Clim Change 3(4):391–394. https://doi.org/10.1038/nclimate1748

    CAS  Article  Google Scholar 

  40. MacIntyre S, Wanninkhof R, Chanton J (1995) Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In: Matson P, Harris R (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell, New York, pp 52–57 ISBN: 978-0-632-03641

    Google Scholar 

  41. Matta E, Selge F, Gunkel G, Rossiter K, Jourieh A, Hinkelmann R (2016) Simulations of nutrient emissions from a net cage aquaculture system in a Brazilian bay. Water Sci Technol 73(10):2430–2435. https://doi.org/10.2166/wst.2016.092

    CAS  Article  Google Scholar 

  42. Musenze RS, Grinham A, Werner U, Gale D, Sturm K, Udy J, Yuan Z (2014) Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs. Environ Sci Technol 48(24):14499–14507. https://doi.org/10.1021/es505324h

    CAS  Article  Google Scholar 

  43. Myhre GD, Shindell FMB, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker T et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 659–740. https://doi.org/10.1017/CBO9781107415324.018

  44. Raadal HL, Gagnon L, Modahl IS, Hanssen OJ (2011) Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renew Sust Energ Rev 15(7):3417–3422. https://doi.org/10.1016/j.rser.2011.05.001

    Article  Google Scholar 

  45. Roland F, Vidal LO, Pacheco FS, Barros NO, Assireu A, Ometto J, Cimbleris ACP, Cole JJ (2010) Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquat Sci 72(3):283–293. https://doi.org/10.1007/s00027-010-0140-0

    CAS  Article  Google Scholar 

  46. RStudioTeam (2015) R Studio: integrated development environment for R

  47. Selge F, Matta E, Hinkelmann R, Gunkel G (2016) Nutrient load concept-reservoir vs. bay impacts: a case study from a semi-arid watershed. Water Sci Technol 74(7):1671–1679. https://doi.org/10.2166/wst.2016.342

    CAS  Article  Google Scholar 

  48. Sturm K, Yuan Z, Gibbes B, Werner U, Grinham A (2014) Methane and nitrous oxide sources and emissions in a subtropical freshwater reservoir, South East Queensland, Australia. Biogeosciences 11(18):5245–5258. https://doi.org/10.5194/bg-11-5245-2014

    Article  Google Scholar 

  49. UNESCO and IHA (2010) GHG Measurement Guidelines for Freshwater Reservoirs. In: Gondelfum J (Ed) UNESCO/IHA Greenhouse gas emissions from freshwater reservoirs research project. The international Hydropower Association (IHA) London.

    Google Scholar 

  50. Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55(4):1723–1732. https://doi.org/10.4319/lo.2010.55.4.1723

    CAS  Article  Google Scholar 

  51. Wehrli B (2011) Climate science: renewable but not carbon-free. Nat Geosci 4(9):585–586. https://doi.org/10.1038/ngeo1226

    CAS  Article  Google Scholar 

  52. Wu X, Conrad R (2001) Functional and structural response of a cellulose-degrading methanogenic microbial community to multiple aeration stress at two different temperatures. Environ Microbiol 3(6):355–362. https://doi.org/10.1046/j.1462-2920.2001.00199.x

    CAS  Article  Google Scholar 

  53. Zhao Y, Wu B, Zeng Y (2013) Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 10(2):1219–1230. https://doi.org/10.5194/bg-10-1219-2013

    CAS  Article  Google Scholar 

  54. Zheng H, Zhao X, Zhao T, Chen F, Xu W, Duan X, Wang X, Ouyang Z (2011) Spatial–temporal variations of methane emissions from the Ertan hydroelectric reservoir in southwest China. Hydrol Process 25(9):1391–1396. https://doi.org/10.1002/hyp.7903

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Special thanks go to Dr. Günter Gunkel from Berlin University of Technology for his guidance and to Innovate PhD students Debora Lima, Jonas Keitel, and Florian Selge for support in the field. We thank two anonymous reviewers for their comments which helped to improve the manuscript.

Funding

This study is part of the (INNOVATE) project “INterplay among multiple uses of water reservoirs via inNOVate coupling Aquatic and Terrestrial Ecosystems.” The binational INNOVATE project is funded by the German Federal Ministry of Education and Research (BMBF, FKz 01LL0904C) and the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Ministério da Ciência, Tecnologia e Inovação (MCTI) and the Universidade Federal de Pernambuco (UFPE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maricela Rodriguez.

Electronic supplementary material

ESM 1

(DOCX 568 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, M., Casper, P. Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Reg Environ Change 18, 1901–1912 (2018). https://doi.org/10.1007/s10113-018-1289-7

Download citation

Keywords

  • Reservoir
  • Hydropower
  • Greenhouse gases
  • Methane
  • Semi-arid
  • Tropical