Skip to main content

Warming autumns at high latitudes of Europe: an opportunity to lose or gain in cereal production?

Abstract

Climate change is projected to prolong Finland’s short growing season at both ends though warming autumns are not expected to benefit arable crops such as cereals, in contrast to warming springs. To test the veracity of this, ex-post and ex-ante approaches were applied to assess the past and future roles of autumns on cereal growth. Long-term multi-location data were used to assess the response of spring cereal cultivars on late harvests in the past. Future changes in temperature and precipitation, derived from the simulations performed with 28 global climate models under the RCP4.5 and RCP8.5 scenarios, compared with a baseline period, with mid-point year 1986, were averaged for three 30-year periods with mid-point years of 2025, 2055, and 2085. The phenological timing of growing seasons in a changing climate was simulated with the WOFOST. Warming autumns have insignificant potential for additional cereal yield gains. Even the latest maturing wheat cultivars would mature by the same time or earlier than currently when sown earlier. However, inter-annual variability in harvest times remains high, and hence many emerging risks may result from the elevated autumn precipitation in the future that will accompany delayed harvests. Means to benefit from warming autumns and mitigate their potential harmful impacts, like increasing nutrient leaching, erosion, and soil compaction, are needed. Post-harvest sowing of nutrient scavenging catch crops may provide the necessary soil cover, produce biomass, increase soil carbon, and protect soil from erosion and compaction. Hence, double cropping may be a viable alternative to safeguard sustainable high-latitude agriculture in a changing climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alakukku L, Weisskopf P, Chamen WCT, Tijink FGJ, van dL, Pires S, Sommer C, Spoor G (2003) Prevention strategies for field traffic-induced subsoil compaction: a review: part 1. Machine/soil interactions. Soil Tillage Res 73:145–160. https://doi.org/10.1016/S0167-1987(03)00107-7

    Article  Google Scholar 

  2. Angulo C, Rötter R, Lock R, Enders A, Fronzek S, Ewert F (2013) Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric For Meteorol 170:32–46. https://doi.org/10.1016/j.agrformet.2012.11.017

    Article  Google Scholar 

  3. Aronsson H, Hansen EM, Thomsen IK, Liu J, Øgaard AF, Känkänen H, Ulén B (2016) The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. J Soil Water Conserv 71:41–55. https://doi.org/10.2489/jswc.71.1.41

    Article  Google Scholar 

  4. Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J (2015) Rising temperatures reduce global wheat production. Nature Clim Chang 5:143–147. https://doi.org/10.1038/nclimate2470

    Article  Google Scholar 

  5. Berry PM, Spink J (2012) Predicting yield losses caused by lodging in wheat. Field Crops Res 137:19–26. https://doi.org/10.1016/j.fcr.2012.07.019

    Article  Google Scholar 

  6. Boogaard HL, van Diepen CA, Rötter RP, Cabrera JMCA, van Laar HH (1998) WOFOST 7.1. User’s guide for the WOFOST 7.1. Crop growth simulation model and WOFOST control center 1.5.52. DLO Winand Staring Centre, Wageningen, The Netherlands

  7. Collins M, Knutti R, Arblaster J, Dufresne J, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st edn. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1029–1136

  8. Czaban J, Wróblewska B, Sulek A, Mikos M, Boguszewska E, Podolska G, Nieróbca A (2015) Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:874–910. https://doi.org/10.1080/19440049.2015.1019939

    Article  CAS  Google Scholar 

  9. Elsgaard L, Borgesen CD, Olesen JE, Siebert S, Ewert F, Peltonen-Sainio P, Rotter RP, Skjelvag AO (2012) Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:1514–1526. https://doi.org/10.1080/19440049.2012.700953

    Article  CAS  Google Scholar 

  10. El-Wakeil N, Volkmar C (2011) Effect of weather conditions on frit fly (Oscinella frit, Diptera: Chloropidae) activity and infestation levels in spring wheat in Central Germany. Gesunde Pflanzen 63:159–165. https://doi.org/10.1007/s10343-011-0255-9

    Article  Google Scholar 

  11. Hietaniemi V, Rämö S, Yli-Mattila T, Jestoi M, Peltonen S, Kartio M, Sieviläinen E, Koivisto T, Parikka P (2016) Updated survey of Fusarium species and toxins in Finnish cereal grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33:831–848. https://doi.org/10.1080/19440049.2016.1162112

    Article  CAS  Google Scholar 

  12. Höglind M, Thorsen SM, Semenov MA (2013) Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models. Agric For Meteorol 170:103–113. https://doi.org/10.1016/j.agrformet.2012.02.010

    Article  Google Scholar 

  13. Hyytiäinen K, Niemi JK, Koikkalainen K, Palosuo T, Salo T (2011) Adaptive optimization of crop production and nitrogen leaching abatement under yield uncertainty. Agric Syst 104:634–644. https://doi.org/10.1016/j.agsy.2011.06.006

    Article  Google Scholar 

  14. Jokiniemi HT, Ahokas JM (2014a) Drying process optimisation in a mixed-flow batch grain dryer. Biosyst Eng 121:209–220. https://doi.org/10.1016/j.biosystemseng.2014.01.002

    Article  Google Scholar 

  15. Jokiniemi T, Oksanen T, Ahokas J (2015) Continuous airflow rate control in a recirculating batch grain dryer. Agron Res 13:89–94

    Google Scholar 

  16. Jokiniemi T, Hautala M, Oksanen T, Ahokas J (2016) Parallel plate heat exchanger for heat energy recovery in a farm grain dryer. Dry Technol 34:547–556. https://doi.org/10.1080/07373937.2015.1061541

    Article  Google Scholar 

  17. Jokiniemi T, Ahokas J (2014b) Effect of heat insulation on the energy consumption of recirculating mixed-flow batch grain dryer. Agric Eng Int 16:205–213

    Google Scholar 

  18. Jones PD, Lister DH, Jaggard KW, Pidgeon JD (2003) Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim Chang 58:93–108. https://doi.org/10.1023/A:1023420102432

    Article  Google Scholar 

  19. Jylhä K, Laapas M, Ruosteenoja K, Arvola L, Drebs A, Kersalo J, Saku S, Gregow H, Hannula H, Pirinen P (2014) Climate variability and trends in the Valkea-Kotinen region, southern Finland: comparisons between the past, current and projected climates. Boreal Environ Res 19:4–30

    Google Scholar 

  20. Jylhä K, Jokisalo J, Ruosteenoja K, Pilli-Sihvola K, Kalamees T, Seitola T, Mäkelä HM, Hyvönen R, Laapas M, Drebs A (2015) Energy demand for the heating and cooling of residential houses in Finland in a changing climate. Energy Buildings 99:104–116. https://doi.org/10.1016/j.enbuild.2015.04.001

    Article  Google Scholar 

  21. Kang MS, Gauch jr HG (1996) Genotype-by-environment interaction, CRC Press. 404 p

  22. Kaukoranta T, Hakala K (2008) Impact of spring warming on sowing times of cereal, potato and sugar beet in Finland. Agric Food Sci 17:165–176. https://doi.org/10.2137/145960608785328198

    Article  Google Scholar 

  23. Khuri AI, Mathew T, Sinha BK (1998) Statistical tests for mixed linear models. John Wiley & Sons, Inc, 352 p

  24. Lehtonen I, Kämäräinen M, Gregow H, Venäläinen A, Peltola H (2016) Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. Nat Hazards Earth Syst Sci 16:2259–2271. https://doi.org/10.5194/nhess-16-2259-2016

    Article  Google Scholar 

  25. Lehtonen I, Ruosteenoja K, Jylhä K (2014) Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles. Int J Climatol 34:1208–1222. https://doi.org/10.1002/joc.3758

    Article  Google Scholar 

  26. Lindblad M, Solbreck C (1998) Predicting Oscinella frit population densities from suction trap catches and weather data. J Appl Ecol 35:871–881. https://doi.org/10.1111/j.1365-2664.1998.tb00005.x

    Article  Google Scholar 

  27. Madgwick J, West J, White R, Semenov M, Townsend J, Turner J, Fitt B (2011) Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur J Plant Pathol 130:117–131. https://doi.org/10.1007/s10658-010-9739-1

    Article  Google Scholar 

  28. Mikkola H, Ahokas J (2009) Energy ratios in Finnish agricultural production. Agric Food Sci 18:332–346

    Article  Google Scholar 

  29. Muukkonen P, Hartikainen H, Alakukku L (2009) Effect of soil structure disturbance on erosion and phosphorus losses from Finnish clay soil. Soil Tillage Res 103:84–91. https://doi.org/10.1016/j.still.2008.09.007

    Article  Google Scholar 

  30. Olesen JE, Borgesen CD, Elsgaard L, Palosuo T, Rotter RP, Skjelvag AO, Peltonen-Sainio P, Borjesson T, Trnka M, Ewert F, Siebert S, Brisson N, Eitzinger J, van Asselt ED, Oberforster M, van der Fels-Klerx HJ (2012) Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit Contam Part A, chemistry, analysis, control, exposure & risk assessment 29:1527–1542. https://doi.org/10.1080/19440049.2012.712060

  31. Parikka P, Hakala K, Tiilikkala K (2012) Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:1543–1555. https://doi.org/10.1080/19440049.2012.680613

    Article  CAS  Google Scholar 

  32. Peltonen-Sainio P, Jauhiainen L, Palosuo T, Hakala K, Ruosteenoja K (2016a) Rainfed crop production challenges under European high latitude conditions. Reg Environ Chang 16:1521–1533. https://doi.org/10.1007/s10113-015-0875-1

    Article  Google Scholar 

  33. Peltonen-Sainio P, Jauhiainen L (2014) Lessons from the past in weather variability: sowing to ripening dynamics and yield penalties for northern agriculture from 1970 to 2012. Reg Environ Chang 14:1505–1516. https://doi.org/10.1007/s10113-014-0594-z

    Article  Google Scholar 

  34. Peltonen-Sainio P, Jauhiainen L, Niemi JK, Hakala K, Sipiläinen T (2013) Do farmers rapidly adapt to past growing conditions by sowing different proportions of early and late maturing cereals and cultivars? Agric Food Sci 22:331–341

    Article  Google Scholar 

  35. Peltonen-Sainio P, Jauhiainen L, Nissilä E (2012) Improving cereal protein yields for high latitude conditions. Eur J Agron 39:1–8. https://doi.org/10.1016/j.eja.2012.01.002

    Article  Google Scholar 

  36. Peltonen-Sainio P, Jauhiainen L, Sorvali J (2017) Diversity of high-latitude agricultural landscapes and crop rotations: increased, decreased or back and forth? Agric Syst 154:25–33. https://doi.org/10.1016/j.agsy.2017.02.011

    Article  Google Scholar 

  37. Peltonen-Sainio P, Pirinen P, Mäkelä HM, Ojanen H, Venäläinen A (2016b) Spatial and temporal variation in weather events critical for boreal agriculture: II precipitation. Agric Food Sci 25:57–70

    Google Scholar 

  38. Peltonen-Sainio P, Venäläinen A, Mäkelä HM, Pirinen P, Laapas M, Jauhiainen L, Kaseva J, Ojanen H, Korhonen P, Huusela-Veistola E, Jalli M, Hakala K, Kaukoranta T, Virkajärvi P (2016c) Harmfulness of weather events and the adaptive capacity of farmers at high latitudes of Europe. Clim Res 67:221–240. https://doi.org/10.3354/cr01378

    Article  Google Scholar 

  39. Peltonen-Sainio P, Niemi JK (2012) Protein crop production at the northern margin of farming: to boost or not to boost. Agric Food Sci 21:370–383

    Article  Google Scholar 

  40. Peltonen-Sainio P, Jauhiainen L, Hakala K (2011) Crop responses to temperature and precipitation according to long-term multi-location trials at high-latitude conditions. J Agric Sci 149:49–62. https://doi.org/10.1017/S0021859610000791

    Article  Google Scholar 

  41. Peltonen-Sainio P, Jauhiainen L, Hakala K, Ojanen H (2009) Climate change and prolongation of growing season: changes in regional for field crop production in Finland. Agric Food Sci 18:171–190

    Article  Google Scholar 

  42. Pirttioja N, Carter TR, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F, Trnka M, Acutis M, Asseng S, Baranowski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain MF, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum KC, Kollas C, Krzyszczak J, Lorite IJ, Minet J, Minguez MI, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane AC, Ruget F, Sanna M, Semenov MA, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z, Rötter RP (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim Res 65:87–105. https://doi.org/10.3354/cr01322

    Article  Google Scholar 

  43. Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric Ecosyst Environ 200:33–41. https://doi.org/10.1016/j.agee.2014.10.024

    Article  CAS  Google Scholar 

  44. Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38:2575–2591. https://doi.org/10.1007/s00382-011-1076-3

    Article  Google Scholar 

  45. Rajala A, Peltonen-Sainio P (2000) Manipulating yield potential in cereals by plant growth regulators. In: Basra AS (ed) Growth regulators in crop production. Food Products Press, New York, pp 27–70

    Google Scholar 

  46. Rötter RP, Palosuo T, Pirttioja NK, Dubrovsky M, Salo T, Fronzek S, Aikasalo R, Trnka M, Ristolainen A, Carter TR (2011) What would happen to barley production in Finland if global warming exceeded 4°C? A model-based assessment. Eur J Agron 35:205–214. https://doi.org/10.1016/j.eja.2011.06.003

    Article  Google Scholar 

  47. Ruosteenoja K, Markkanen T, Venäläinen A, Räisänen P, Peltola H (2017) Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim Dyn. https://doi.org/10.1007/s00382-017-3671-4

  48. Ruosteenoja K, Jylhä K, Kämäräinen M (2016a) Climate projections for Finland under the RCP forcing scenarios. Geophysica 51:17–50

    Google Scholar 

  49. Ruosteenoja K, Räisänen J, Venäläinen A, Kämäräinen M (2016b) Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int J Climatol 36:3039–3055. https://doi.org/10.1002/joc.4535

    Article  Google Scholar 

  50. Ruosteenoja K, Räisänen P (2013) Seasonal changes in solar radiation and relative humidity in Europe in response to global warming. J Clim 26:2467–2481. https://doi.org/10.1175/JCLI-D-12-00007.1

    Article  Google Scholar 

  51. Ruosteenoja K, Räisänen J, Pirinen P (2011) Projected changes in thermal seasons and the growing season in Finland. Int J Climatol 31:1473–1487. https://doi.org/10.1002/joc.2171

    Article  Google Scholar 

  52. Shabani F, Kumar L, Esmaeili A (2014) Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agric Ecosyst Environ 197:96–105. https://doi.org/10.1016/j.agee.2014.08.005

    Article  Google Scholar 

  53. Triboi E, Martre P, Girousse C, Ravel C, Triboi-Blondel A (2006) Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eur J Agron 25:108–118. https://doi.org/10.1016/j.eja.2006.04.004

    Article  CAS  Google Scholar 

  54. Tuulos A, Yli-Halla M, Stoddard F, Mäkelä P (2015) Winter turnip rape as a soil N scavenging catch crop in a cool humid climate. Agron Sust Develop 35:359–366. https://doi.org/10.1007/s13593-014-0229-2

    Article  CAS  Google Scholar 

  55. Valkama E, Lemola R, Känkänen H, Turtola E (2015) Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agric Ecosyst Environ 203:93–101. https://doi.org/10.1016/j.agee.2015.01.023

    Article  CAS  Google Scholar 

  56. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

    Article  Google Scholar 

Download references

Funding

The work was financed by Ministry of Agriculture and Forestry and Natural Resources Institute Finland (Luke) as a part of a consortium project titled Improving Resilience to Climate Change and Variation Induced Risks in Agriculture (ILMAPUSKURI) and by Luke as a strategic project Designing Crop Cultivar Ideotype and Climate Smart Farming System for Agriculture Sustainable Intensification (ClimSmartAgri). Additional funding was received from The Academy of Finland through the project Pathways linking uncertainties in model projections of climate and its effects (PLUMES) (decisions 278067, 277403, and 292836).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pirjo Peltonen-Sainio.

Additional information

Editor:Wolfgang Cramer.

Electronic supplementary material

Fig S1

Grain yield (t ha−1), plant height (cm), lodging (%), growing time (d), grain protein concentration (%), protein yield (kg ha−1), single-grain weight (mg) of barley and oat, and hull content (%) of oat depending on grain moisture content at harvest. Black symbol indicates barley and light gray, oat (PPTX 97 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peltonen-Sainio, P., Palosuo, T., Ruosteenoja, K. et al. Warming autumns at high latitudes of Europe: an opportunity to lose or gain in cereal production?. Reg Environ Change 18, 1453–1465 (2018). https://doi.org/10.1007/s10113-017-1275-5

Download citation

Keywords

  • Cereal
  • Climate change
  • Cover crop
  • Harvest time
  • Precipitation
  • Risk