Regional Environmental Change

, Volume 18, Issue 3, pp 751–762 | Cite as

A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways

  • Hermann Lotze-Campen
  • Peter H. Verburg
  • Alexander Popp
  • Marcus Lindner
  • Pieter J. Verkerk
  • Alexander Moiseyev
  • Elizabeth Schrammeijer
  • John Helming
  • Andrzej Tabeau
  • Catharina J. E. Schulp
  • Emma H. van der Zanden
  • Carlo Lavalle
  • Filipe Batista e Silva
  • Ariane Walz
  • Benjamin Bodirsky
Original Article

Abstract

Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales.

Keywords

Land use change Integrated modelling Cross-scale interaction Nature protection Impact assessment 

Notes

Acknowledgements

This work has been funded by the EU FP7 Project VOLANTE (Visions of Land Use Transitions in Europe), EC Contract Ref: FP7-ENV-2010-265104.

Supplementary material

10113_2017_1167_MOESM1_ESM.docx (93 kb)
ESM 1 (DOCX 92 kb).

References

  1. Baranzelli C, Jacobs C, Batista E, Silva F, Perpiña Castillo C, Lopes Barbosa A, Arevalo Torres J, Lavalle C (2014) The reference scenario in the LUISA platform—updated configuration 2014. Publications Office of the European Union, Luxembourg. doi: 10.2788/85104 Google Scholar
  2. Batista E, Silva F, Koomen E, Diogo V, Lavalle C (2014) Estimating demand for industrial and commercial land use given economic forecasts. PLoS One 9(3):e91991. doi: 10.1371/journal.pone.0091991 CrossRefGoogle Scholar
  3. Boncina A (2011) Conceptual approaches to integrate nature conservation into forest management: a Central European perspective. Int For Rev 13(1):13–22. doi: 10.1505/ifor.13.1.13 Google Scholar
  4. Brooks T, Russell M, Mittermeier A, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Goettsch Mittermeier C, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61. doi: 10.1126/science.1127609 CrossRefGoogle Scholar
  5. Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conservation planning for ecosystem services. PLoS Biol 4(11):e379. doi: 10.1371/journal.pbio.0040379 CrossRefGoogle Scholar
  6. Gaston KJ, Jackson SF, Nagy A, Cantú-Salazar L, Johnson M (2008) Protected areas in Europe. Ann N Y Acad Sci 1134:97–119. doi: 10.1196/annals.1439.006 CrossRefGoogle Scholar
  7. Gocht A, Britz W (2010) EU-wide farm type supply models in CAPRI—how to consistently disaggregate sector models into farm type models. Journal of Policy Modelling 33(1):146–167. doi: 10.1016/j.jpolmod.2010.10.006 CrossRefGoogle Scholar
  8. Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555. doi: 10.1126/science.1106049 CrossRefGoogle Scholar
  9. Harvey CA, Dickson B, Kormos C (2010) Opportunities for achieving biodiversity conservation through REDD. Conserv Lett 3:53–61. doi: 10.1111/j.1755-263X.2009.00086.x CrossRefGoogle Scholar
  10. Helming K, Bach H, Dilly O, Hüttl RF, König B, Kuhlman T, Perez-Soba M, Sieber S, Smeets P, Tabbush P, Tscherning K, Wascher D, Wiggering H (2008) Ex ante impact assessment of land use change in European regions—the SENSOR approach. In: Helming K, Pérez-Soba M, Tabbush P (eds) Sustainability impact assessment of land use changes. Springer, Berlin, pp 77–105CrossRefGoogle Scholar
  11. Helming K, Diehl K, Bach H, Dilly O, König B, Kuhlman T, Perez-Soba M, Sieber S, Tabbush P, Tscherning K, Wascher D, Wiggering H (2011a) Ex ante impact assessment of policies affecting land use. Part A: analytical framework. Ecol Soc 16(1):27 [online] URL: http://www.ecologyandsociety.org/vol16/iss1/art27/ CrossRefGoogle Scholar
  12. Helming K, Diehl K, Kuhlman T, Jansson T, Verburg PH, Bakker M, Perez-Soba M, Jones L, Verkerk PJ, Tabbush P, Breton Morris J, Drillet J, Farrington J, LeMouël P, Zagame P, Stuczynski T, Siebielec G, Wiggering H (2011b) Ex ante impact assessment of policies affecting land use. Part B: application of the analytical framework. Ecol Soc 16(1):29 [online] URL: http://www.ecologyandsociety.org/vol16/iss1/art29/ CrossRefGoogle Scholar
  13. Jansson T, Bakker M, Boitier B, Fougeyrollas A, Helming J, van Meijl H, Verkerk PJ (2008) Cross sector land use modelling framework. In: Helming K, Tabbush P, Perez-Soba M (eds) Sustainability impact assessment of land use policies. Springer-Verlag, Berlin, pp 159–180CrossRefGoogle Scholar
  14. Jenkins CN, Joppa L (2009) Expansion of the global terrestrial protected area system. Biol Conserv 142(10):2166–2174. doi: 10.1016/j.biocon.2009.04.016 CrossRefGoogle Scholar
  15. Jongman R, Bouwma I, Griffioen A, Jones-Walters L, Van Doorn A (2011) The Pan European Ecological Network: PEEN. Landsc Ecol 26:311–326. doi: 10.1007/s10980-010-9567-x CrossRefGoogle Scholar
  16. Kallio AMI, Moiseyev A, Solberg B (2006) Economic impacts of increased forest conservation in Europe: a forest sector model analysis. Environ Sci Pol 9:457–465. doi: 10.1016/j.envsci.2006.03.002 CrossRefGoogle Scholar
  17. Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108:3465–3472. doi: 10.1073/pnas.1100480108 CrossRefGoogle Scholar
  18. Leimbach M, Bauer N, Baumstark L, Edenhofer O (2010) Mitigation costs in a globalized world: climate policy analysis with REMIND-R. Environ Model Assess 15:155–173. doi: 10.1007/s10666-009-9204-8 CrossRefGoogle Scholar
  19. Liu JQ, Hull V, Batistella M, DeFries R, Dietz T, Fu F, Hertel TW, Izaurralde RC, Lambin EF, Li S, Martinelli LA, McConnell W, Moran EF, Naylor R, Ouyang Z, Polenske KR, Reenberg A, de Miranda RG, Simmons CS, Verburg PH, Vitousek PM, Zhang F, Zhu C (2013) Framing sustainability in a telecoupled world. Ecol Soc 18(2):26. doi: 10.5751/ES-05873-180226 CrossRefGoogle Scholar
  20. Lotze-Campen H, Müller C, Bondeau A, Rost S, Popp A, Lucht W (2008) Global food demand, productivity growth and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric Econ 39(3):325–338. doi: 10.1111/j.1574-0862.2008.00336.x Google Scholar
  21. Lotze-Campen H, Popp A, Beringer T, Müller C, Bondeau A, Rost S, Lucht W (2010) Scenarios of global bioenergy production: the trade-offs between agricultural expansion, intensification and trade. Ecol Model 221:2188–2196. doi: 10.1016/j.ecolmodel.2009.10.002 CrossRefGoogle Scholar
  22. Lotze-Campen H, Popp A, Verburg P, Lindner M, Verkerk H, Kakkonen E, Schrammeijer E, Schulp N, van der Zanden E, van Meijl H, Tabeau A, Helming J, Kuemmerle T, Lavalle C, Batista e Silva F, Eitelberg D (2013) Description of the translation of sector specific land cover and land management information. VOLANTE Deliverable D7.3. Download: http://www.volante-project.eu/images/stories/DELIVERABLES/VOLANTE_D7.3_Description_of_the_translation_of_sector_specific_land_cover_and_management_information.pdf
  23. Maestre Andres S, Calvet Mir L, van den Bergh JCJM, Ring I, Verburg PH (2012) Ineffective biodiversity policy due to five rebound effects. Ecosystem Services 1:101–110. doi: 10.1016/j.ecoser.2012.07.003 CrossRefGoogle Scholar
  24. Mayer AL, Kauppi PE, Angelstam PK, Zhang Y, Tikka PM (2005) Importing timber, exporting ecological impact. Science 308:359–360. doi: 10.1126/science.1109476 CrossRefGoogle Scholar
  25. Mayer AL, Kauppi PE, Tikka PM, Angelstam PK (2006) Conservation implications of exporting domestic wood harvest to neighboring countries. Environ Sci Pol 9:228–236. doi: 10.1016/j.envsci.2005.12.002 CrossRefGoogle Scholar
  26. MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being. Island Press, WashingtonGoogle Scholar
  27. Miles L, Kapos V (2008) Reducing greenhouse gas emissions from deforestation and forest degradation: global land-use implications. Science 320:1454–1455. doi: 10.1126/science.1155358 CrossRefGoogle Scholar
  28. Moiseyev A, Solberg B, Kallio AMI, Lindner M (2011) An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries. J For Econ 17:197–213. doi: 10.1016/j.jfe.2011.02.010 Google Scholar
  29. Mouche M, Lavorel S, Lasseur R, Paracchini ML, Rega C, Stuerck J, Schulp N, Verburg P, Verkerk H (2014) Science-based trade-off and synergy evaluation of hotspots and problem spots in future ESS supply. VOLANTE Deliverable 12.2. Download: http://www.volante-project.eu/news/166-d122-science-based-trade-off-and-synergy-evaluation-of-hotspots-and-problem-spots-in-future-ess-supply.html
  30. Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci 105(28):9495–9500. doi: 10.1073/pnas.0707823105 CrossRefGoogle Scholar
  31. Nakićenović N, Alcamo J, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler I, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  32. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KM, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11. doi: 10.1890/080023 CrossRefGoogle Scholar
  33. Paterson J, Metzger M, Walz A (2012) The VOLANTE scenarios: framework, storylines and drivers. Download: http://www.volante-project.eu/documents/104-deliverables.html
  34. Popp A, Humpenöder F, Weindl I, Bodirsky BL, Bonsch M, Lotze-Campen H, Müller C, Biewald A, Rolinski S, Stevanovic M, Dietrich JP (2014) Land-use protection for climate change mitigation. Nat Clim Chang 4:1095–1098. doi: 10.1038/nclimate2444 CrossRefGoogle Scholar
  35. Pouzols FM, Toivonen T, Di Minin E, Kukkala AS, Kullberg P, Kuustera J, Lehtomaki J, Tenkanen H, Verburg PH, Moilanen A (2014) Global protected area expansion is compromised by projected land-use and parochialism. Nature 516:383–386. doi: 10.1038/nature14032 CrossRefGoogle Scholar
  36. Radeloff VC, Beaudry F, Brooks TM, Butsic V, Dubinin M, Kuemmerle T, Pidgeon AM (2013) Hot moments for biodiversity conservation. Conserv Lett 6:58–65. doi: 10.1111/j.1755-263X.2012.00290.x CrossRefGoogle Scholar
  37. Reid WV, Miller KR (1989) Keeping options alive: the scientific basis for conserving biodiversity. World Resources Institute, WashingtonGoogle Scholar
  38. Rounsevell MDA, Pedroli B, Erb K, Gramberger M, Gravsholt Busck A, Haberl H, Kristensen S, Kuemmerle T, Lavorel S, Lindner M, Lotze-Campen H, Metzger MJ, Murray-Rust D, Popp A, Pérez-Soba M, Reenberg A, Vadineanu A, Verburg PH, Wolfslehner B (2012) Challenges for land system science. Land Use Policy 29(4):899–910. doi: 10.1016/j.landusepol.2012.01.007 CrossRefGoogle Scholar
  39. Sallnäs O (1990) A matrix model of the Swedish forest. Studia Forestalia Suecica 183:23Google Scholar
  40. Schelhaas M-J, Eggers J, Lindner M, Nabuurs GJ, Päivinen R, Schuck A, Verkerk PJ, van der Werf DC, Zudin S (2007) Model documentation for the European forest information scenario model (EFISCEN 3.1.3). Alterra report 1559 and EFI technical report 26. Alterra and European Forest Institute, Wageningen and JoensuuGoogle Scholar
  41. Smith P, Gregory PJ, van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos Trans R Soc B Biol Sci 365:2941–2957. doi: 10.1098/rstb.2010.0127 CrossRefGoogle Scholar
  42. Stickler CM, Nepstad DC, Coe MT, McGrath DG, Rodrigues HO, Walker WS, Soares-Filho BS, Davidson EA (2009) The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region. Glob Change Biol 15:2803–2824. doi: 10.1111/j.1365-2486.2009.02109.x CrossRefGoogle Scholar
  43. Stürck J, Levers C, van der Zanden EH, Schulp CJE, Verkerk PJ, Kuemmerle T, Helming J, Lotze-Campen H, Popp A, Schrammeijer E, Verburg PH (2015) Simulating and visualizing future land change trajectories in Europe. Regional Environmental Change:in press. doi: 10.1007/s10113-015-0876-0 Google Scholar
  44. Verburg PH, Overmars K (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc Ecol 24:1167–1181. doi: 10.1007/s10980-009-9355-7 CrossRefGoogle Scholar
  45. Verburg P, Eickhout B, van Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42(1):57–77. doi: 10.1007/s00168-007-0136-4 CrossRefGoogle Scholar
  46. Verburg P, Lotze-Campen H, Popp A, Lindner M, Verkerk H, Kakkonen E, Schrammeijer E, Helming J, Tabeau A, Schulp N, van der Zanden E, Lavalle C, Batista e Silva F, Eitelberg D (2013) Report documenting the assessment results for the scenarios stored in the database. VOLANTE Deliverable D11.1. Download: http://www.volante-project.eu/images/stories/DELIVERABLES/VOLANTE_D11.1_Report_documenting_the_assessment_results_for_the_scenarios_stored_in_the_database.pdf.pdf
  47. Verburg PH, Dearing J, Dyke J, Svd L, Seitzinger S, Steffen W, Syvitski J (2015) Methods and approaches to modelling the Anthropocene. Glob Environ Chang. doi: 10.1016/j.gloenvcha.2015.08.007 Google Scholar
  48. Verkerk P, Zanchi G, Lindner M (2014a) Trade-offs between forest protection and wood supply in Europe. Environ Manag 53:1085–1094. doi: 10.1007/s00267-014-0265-3 CrossRefGoogle Scholar
  49. Verkerk PJ, Mavsar R, Giergiczny M, Lindner M, Edwards D, Schelhaas MJ (2014b) Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests. Ecosystem Services 9:155–165. doi: 10.1016/j.ecoser.2014.06.004 CrossRefGoogle Scholar
  50. Woltjer G, Kuiper M, Kavallari A, van Meijl H, Powell J, Rutten M, Shutes L, Tabeau A (2014) The MAGNET model—module description, LEI report 14-057. LEI Wageningen UR, The HagueGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hermann Lotze-Campen
    • 1
    • 2
  • Peter H. Verburg
    • 3
  • Alexander Popp
    • 1
  • Marcus Lindner
    • 4
  • Pieter J. Verkerk
    • 4
  • Alexander Moiseyev
    • 4
  • Elizabeth Schrammeijer
    • 3
  • John Helming
    • 5
  • Andrzej Tabeau
    • 5
  • Catharina J. E. Schulp
    • 3
  • Emma H. van der Zanden
    • 3
  • Carlo Lavalle
    • 6
  • Filipe Batista e Silva
    • 6
  • Ariane Walz
    • 1
    • 7
  • Benjamin Bodirsky
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Environmental Geography GroupVU University AmsterdamAmsterdamThe Netherlands
  4. 4.European Forest InstituteJoensuuFinland
  5. 5.LEIWageningen University and Research CentreThe HagueThe Netherlands
  6. 6.European Commission DG Joint Research CentreISPRAItaly
  7. 7.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdam-GolmGermany

Personalised recommendations