Skip to main content

Advertisement

Log in

Impact assessment of climate change on farming systems in the South Mediterranean area: a Tunisian case study

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

This study considers a quantitative approach for assessing the performance of Tunisian farming systems to face climate change. It is based on the resilience concept and the calculation, with a modelling chain, of three indicators: land stock, labour stock, and income flux. Two system states, “base” and “climate change”, and a time horizon of 2010–2025, are developed and compared for representative farming systems. The study shows that 55% of the farming systems were identified as being resilient to climate change. They are diversified and mostly grow cereals, vegetables, and forage crops combined with livestock, increasing their capability to mitigate climate change by reorganizing crop activities. 35% of the farms identified as being non-resilient are dominated by orchards, or cereals and orchards. They showed an important drop in farm income (−45%), mainly due to their inability to adapt their cropping systems to water stress and soil salinity. Finally, only 10% were identified as being poorly resilient farming systems. Those farms have mainly intensified cereal cropping systems based on a strategy of purchasing land to increase the surface area of profitable activities (forage and livestock). Overall, the methodology can be adapted for other dry land areas in the Mediterranean region and help experts and policy-makers to propose and test strategies for adapting to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbes K (2005) Analyse de la relation agriculture environnement: une approche bio-économique. Cas de la salinisation des sols et de la pollution par les nitrates au nord tunisien. Thèse (Dr. de la Faculté des Sciences Economiques), Université Monpellier I

  • Alexandrov VA, Hoogenboom B (2000) The impact of climate variability and change on crop yield in Bulgaria. Agric For Meteorol 104:315–327. doi:10.1016/S0168-1923(00)00166-0

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper, vol 56. FAO, Rome

    Google Scholar 

  • Anderies JM, Ryan P, Walker BH (2006) Loss of resilience, crisis, and institutional change: lessons from an intensive agricultural system in southeastern Australia. Ecosystems 9:865–878. doi:10.1007/s10021-006-0017-1

    Article  Google Scholar 

  • Bachta MS (2011) La céréaliculture en Tunisie: une politique de régulation à repenser. CIHEAM Notes d’Analyse du CIHEAM:19, Paris

  • Barbier B, Bergeron G (1999) Impact of policy interventions on land management in Honduras: results of a bioeconomic model. Agric Syst 60:1–16

    Article  Google Scholar 

  • Belhouchette H (2004) Evaluation de la durabilité de successions culturales à l’échelle d’un périmètre irrigué en Tunisie: utilisation conjointe d’un modèle de culture (Cropsyst), d’un SIG et d’un modèle bio-économique. Thèse (Dr. d’Université en Sciences Agronomiques), Ensa (Montpellier)

  • Belhouchette H, Blanco M, Wery J, Flichman G (2012) Sustainability of irrigated farming systems in a Tunisian region: a recursive stochastic programming analysis. Comput Electron Agric 86:100–110. doi:10.1016/j.compag.2012.02.016

    Article  Google Scholar 

  • Boussard JM, Boussemart JP, Flichman G, Jacquet F, Lefer HB (1997) Les effets de la réforme de la PAC sur les exploitations de grande culture. Economie Rurale. doi:10.3406/ecoru.1997.4865

    Google Scholar 

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussière F, Cabidoche YM, Cellier P, Debaeke P, Gaudillère JP, Hénault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model stics. Eur J Agron 18:309–332. doi:10.1016/S1161-0301(02)00110-7

    Article  Google Scholar 

  • Carpenter S, Walker B, Anderies JM, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4:765–781. doi:10.1007/s10021-001-0045-9

    Article  Google Scholar 

  • Clarke D, Smith M, El-Askari K (1998) CropWat for Windows: user guide. FAO, Rome

    Google Scholar 

  • Dahan R, Boughlala M, Mrabet R, Laamari A, Balaghi R, Lajouad L (2012) A review of available knowledge on land degradation in Morocco. International Center for Agricultural Research in the Dry Areas (ICARDA) and USAID. Oasis Country Report 2

  • Darnhofer I, Bellon S, Dedieu B, Milestad R (2008) Adaptative farming systems—a position paper. Paper presented at the 8th European IFSA symposium: empowerment of the rural actors, a renewal of farming systems perspectives, Clermont Ferrand, France, 6–10 July 2008

  • Donatelli M, Russell G, Rizzoli AE, Acutis M, Adam M, Athanasiadis IN, Balderacchi M, Bechini L, Belhouchette H, Bellocchi G, Bergez J-E, Botta M, Braudeau E, Bregaglio S, Carlini L, Casellas E, Celette F, Ceotto E, Charron-Moirez MH, Confalonieri R, Corbeels M, Criscuolo L, Cruz P, di Guardo A, Ditto D, Dupraz C, Duru M, Fiorani D, Gentile A, Ewert F, Gary C, Habyarimana E, Jouany C, Kansou K, Knapen R, Filippi GL, Leffelaar PA, Manici L, Martin G, Martin P, Meuter E, Mugueta N, Mulia R, van Noordwijk M, Oomen R, Rosenmund A, Rossi V, Salinari F, Serrano A, Sorce A, Vincent G, Theau J-P, Thérond O, Trevisan M, Trevisiol P, van Evert FK, Wallach D, Wery J, Zerourou A (2010) A component-based framework for simulating agricultural production and externalities. In: Brouwer FM, Ittersum MK (eds) Environmental and agricultural modelling: integrated approaches for policy impact assessment. Springer, Dordrecht, pp 63–108. doi:10.1007/978-90-481-3619-3_4

    Chapter  Google Scholar 

  • Enfors EI, Gordon LJ (2007) Analysing resilience in dryland agroecosystems: a case study of the Makanya catchment in Tanzania over the past 50 years. Land Degrad Dev 18:680–696. doi:10.1002/ldr.807

    Article  Google Scholar 

  • Ewert F, van Ittersum MK, Bezlepkina I, Oude Lansink A, Brouwer F, Andersen E, Flichman G, Heckelei T, Alkan Olsson J, Olsson L, Rizzoli A, van der Wal T, Wery J (2005) Development of a conceptual framework for integrated analysis and assessment of agricultural systems in SEAMLESS-IF. SEAMLESS report no. 1, Wageningen

  • Giller KE, Tittonell P, Rufino MC, van Wijk MT, Zingore S, Mapfumo P, Adjei-Nsiah S, Herrero M, Chikowo R, Corbeels M, Rowe EC, Baijukya F, Mwijage A, Smith J, Yeboah E, van der Burg WJ, Sanogo OM, Misiko M, de Ridder N, Karanja S, Kaizzi C, K’ungu J, Mwale M, Nwaga D, Pacini C, Vanlauwe B (2011) Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agric Syst 104:191–203. doi:10.1016/j.agsy.2010.07.002

    Article  Google Scholar 

  • Gunderson LH, Holling CS (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington

    Google Scholar 

  • Havet A, Coquil X, Fiorelli J, Gibon A, Martel G, Roche B, Ryschawy J, Schaller N, Dedieu B (2014) Review of livestock farmer adaptations to increase forages in crop rotations in western France. Agric Ecosyst Environ 190:120–127. doi:10.1016/j.agee.2014.01.009

    Article  Google Scholar 

  • Hazell PBR, Norton RD (1986) Mathematical programming for economic analysis in agriculture. Macmillan, London

    Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. doi:10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  • Jacquet F, Pluvinage J (1997) Climatic uncertainty and farm policy: a discrete stochastic programming model for cereal-livestock farms in Glgeria. Agric Syst 53:387–407. doi:10.1016/0308-521X(95)00076-H

    Article  Google Scholar 

  • Janssen S, van Ittersum MK (2007) Assessing farm innovations and responses to policies: a review of bio-economic farm models. Agric Syst 94:622–636. doi:10.1016/j.agsy.2007.03.001

    Article  Google Scholar 

  • Kaine GW, Tozer PR (2005) Stability, resilience and sustainability in pasture-based grazing systems. Agric Syst 83:27–48. doi:10.1016/j.agsy.2004.03.001

    Article  Google Scholar 

  • Kandulu JM, Bryan BA, King D, Connor JD (2012) Mitigating economic risk from climate variability in rain-fed agriculture through enterprise mix diversification. Ecol Econ 79:105–112. doi:10.1016/j.ecolecon.2012.04.025

    Article  Google Scholar 

  • Kassam A, Derpsch R, Friedrich T (2014) Global achievements in soil and water conservation: the case of conservation agriculture. Int Soil Water Conserv Res 2:5–13. doi:10.1016/S2095-6339(15)30009-5

    Article  Google Scholar 

  • Ksib Z (2013) La gestion de l’eau dans le bassin versant du Lebna, Cap Bon (Tunisie): pratiques et stratégies d’acteurs locaux. Mémoire, CIHEAM-IAMM

  • Lallau B, Thibaut E (2009) La résilience en débat: quel devenir pour les agriculteurs en difficulté? Revue d’Etudes en Agriculture et Environnement 90:79–102

    Google Scholar 

  • Landais E (1998) Modelling farm diversity: new approaches to typology building in France. Agric Syst 58:505–527. doi:10.1016/S0308-521X(98)00065-1

    Article  Google Scholar 

  • Louhichi K, Belhouchette H, Wery J, Therond O, Flichman G (2008) Impact assessment of the 2003 CAP reform and the nitrate directive on the arable farming system in the Midi-Pyrénées region: bio-economic modeling at field, farm and regional levels. Paper presented at the 109th EAAE seminar. The CAP after the Fischler reform: National implementations, impact assessment and the agenda for future reforms, Viterbo, Italy, November

  • Luers AL, Lobell DB, Sklar LS, Lee Addams C, Matson PA (2003) A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob Environ Change 13:255–267. doi:10.1016/S0959-3780(03)00054-2

    Article  Google Scholar 

  • Mansour M, Hachicha M (2014) The vulnerability of tunisian agriculture to climate change. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance - A sustainable approach. Elsevier, pp 485–500. doi:10.1016/B978-0-12-800875-1.00021-1.

  • MARH Ministère Tunisien de l’Agriculture et des Ressources Hydrauliques, GTZ (2007) Stratégie nationale d’adaptation de l’agriculture tunisienne et des écosystèmes aux changements climatiques. Cahier 2: synthèse

  • McCown R, Hammer G, Hargreaves J, Holzworth D, Freebairn D (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst 50:255–271. doi:10.1016/0308-521X(94)00055-V

    Article  Google Scholar 

  • Ministère tunisien de l’environnement et GIZ (2012) Stratégie Nationale sur le Changement Climatique. Rapport de la stratégie, 165

  • Muradian R (2001) Ecological thresholds: a survey. Ecol Econ 38:7–24. doi:10.1016/S0921-8009(01)00146-X

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros V, Broome J, Cramer W, Christ R, Church J, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC

  • Parsonson-Ensor C, Saunders C (2011) Exploratory research into the resilience of farming systems during periods of hardship. In: New Zealand Agricultural and Resource Economics Society conference August, New Zealand

  • Perrings C, Stern DI (2000) Modelling loss of resilience in agroecosystems: rangelands in Botswana. Environ Resour Econ 16:185–210. doi:10.1023/A:1008374222463

    Article  Google Scholar 

  • Reggiani A, De Graaff T, Nijkamp P (2002) Resilience: an evolutionary approach to spatial economic systems. Netw Spat Econ 2:211–229. doi:10.1023/A:1015377515690

    Article  Google Scholar 

  • Reidsma P, Ewert F, Boogaard H, van Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100:51–60. doi:10.1016/j.agsy.2008.12.009

    Article  Google Scholar 

  • Reidsma P, Ewert F, Alfons OL, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102. doi:10.1016/j.eja.2009.06.003

    Article  Google Scholar 

  • Richardson CW, Wright DA (1984) WGEN: A model for generating daily weather variables. US Department of Agriculture, Agricultural Research Service, Washington

    Google Scholar 

  • Rivington M, Mattthews KB, Bellocchi G, Buchan K, Stöckle CO, Donatelli M (2007) An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environ Model Softw 22:202–210. doi:10.1016/j.envsoft.2005.07.018

    Article  Google Scholar 

  • Rodriguez D, deVoil P, Power B, Cox H, Crimp S, Meinke H (2011) The intrinsic plasticity of farm businesses and their resilience to change. An Australian example. Field Crops Res 124:157–170. doi:10.1016/j.fcr.2011.02.012

    Article  Google Scholar 

  • Roozitalab MH, Serghini H, Keshavarz A, Eser V, De-Pauw E (2013) Elements of research strategy and priorities for sustainable agricultural development of highlands in Central, West Asia and North Africa. International Center for Agriculture Research in the Dry Areas (ICARDA), Amman

    Google Scholar 

  • Ross AM, Rhodes DH, Hastings DE (2008) Definining changeability: reconciling flexibility, adaptability, scalability, modifiability and robustness for maintaining system lifecycle value. Syst Eng 11:246–262. doi:10.1002/sys.20098

    Article  Google Scholar 

  • Souissi I, Temani N, Belhouchette H (2013) Vulnerability of Mediterranean agricultural systems to climate: from regional to field scale analysis. In: Collins E (ed) Climate vulnerability. Elsevier, Paris, pp 89–103. doi:10.1016/b978-0-12-384703-4.00221-5

    Chapter  Google Scholar 

  • Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. doi:10.1016/s1161-0301(02)00109-0

    Article  Google Scholar 

  • Van Ittersum MK, Ewert F, Heckelei T, Wery J, Alkan Olsson J, Andersen E, Bezlepkina I, Brouwer F, Donatelli M, Flichman G, Olsson L, Rizzoli A, van der Wal T, Wien J-E, Wolf J (2008) Integrated assessment of agricultural systems. A component-based framework for the European Union (SEAMLESS). Agric Syst 96:150–165. doi:10.1016/j.agsy.2007.07.009

    Article  Google Scholar 

  • Waithaka M, Thornton P, Herrero M, Shepherd K (2006) Bio-economic evaluation of farmers’ perceptions of viable farms in western Kenya. Agric Syst 90:243–271. doi:10.1016/j.agsy.2005.12.007

    Article  Google Scholar 

  • Walker B, Pearson L (2007) A resilience perspective of the SEEA. Ecol Econ 61:708–715. doi:10.1016/j.ecolecon.2006.04.010

    Article  Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social-ecological systems. Ecol Soc 9:5

    Article  Google Scholar 

  • Walker B, Gunderson LH, Kinzig AP, Folke C, Carpenter SR, Schultz L (2006) A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol Soc 11:1–15

    Google Scholar 

  • Wam HK, Hofstad O, Nævdal E, Sankhayan P (2005) A bio-economic model for optimal harvest of timber and moose. For Ecol Manag 206:207–219. doi:10.1016/j.foreco.2004.10.062

    Article  Google Scholar 

  • Zhou J, Wang C, Zhang H, Dong F, Zheng X, Gale W, Li S (2011) Effect of water saving management practices and nitrogen fertilizer rate on crop yield and water use efficiency in a winter wheat–summer maize cropping system. Field Crops Res 122:157–163. doi:10.1016/j.fcr.2011.03.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Souissi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souissi, I., Boisson, J.M., Mekki, I. et al. Impact assessment of climate change on farming systems in the South Mediterranean area: a Tunisian case study. Reg Environ Change 18, 637–650 (2018). https://doi.org/10.1007/s10113-017-1130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-017-1130-8

Keywords

Navigation