Regional Environmental Change

, Volume 18, Issue 4, pp 1009–1019 | Cite as

Agri-food-energy system metabolism: a historical study for northern France, from nineteenth to twenty-first centuries

  • Eunhye Kim
  • Mathieu Arnoux
  • Petros Chatzimpiros
Original Article


We reconstruct the metabolism of cereal grain production and processing systems in the Seine river basin at four time points between 1860 and 2010 in terms of nitrogen and energy flows, on the basis of statistical data and modeling components. We integrate agricultural, nutrient and energy issues into a joint agri-food-energy system approach. Grain production and processing grew apart from a state of high local integration on the basis of local renewable energy and nitrogen sources to a state of national-scale energy and grain market integration. The grain production volume increased 6-fold under the effect of agricultural industrialization, while the local grain processing capacity dropped along with the decrease in local flour demand. Nitrogen use efficiency (NUE) increased from about 50% in the nineteenth century to about 66% today, and the fossil energy inputs to the system increased from 0.05 to 0.15 GJ/GJ of flour output. Nitrogen loss is today lower than in the early-twentieth century, but its embodied fossil energy content is five times higher, highlighting potential energy benefits from further NUE increase. The energy transition to fossil fuels marked the disruption of an agro-industrial regime founded on renewable energy self-provision and biological nitrogen fixation and helped mastering the system working conditions by reducing its intermittency.


Energy and nutrient flow analysis Agri-food-energy system Socioecological transition Energy return on fossil energy investment Nitrogen use efficiency Seine river basin 



This work was financially supported by R2DS Ile-de-France (project n° 2014–12) and is part of the Emergence Ville de Paris research program Convention 2015 DDEEES 165. The authors address special thanks to Gilles Postel-Vinay and Thierry Michel for precious information and suggestions on system elements described in the paper.


  1. Agreste (2014) Enquête sur les consommations et les productions d’énergie dans les exploitations agricoles en 2011. Accessed 2 Dec 2014
  2. Agreste (2015) Les consommations d’énergie dans les industries agricoles et alimentaires et les scieries en 2010. Chiffres et Données - Série Agroalimentaire 175. Accessed 8 Dec 2015
  3. Agreste (2016) Statistique agricole annuelle. Accessed 30 Feb 2016
  4. ANMF (1954) Annuaire de la meunerie française. Association Nationale de la Meunerie Française, ParisGoogle Scholar
  5. ANMF (1956) Annuaire de la meunerie française. Association Nationale de la Meunerie Française, ParisGoogle Scholar
  6. ANMF (1966) Annuaire de la meunerie française. Association Nationale de la Meunerie Française, ParisGoogle Scholar
  7. ANMF (1972) Annuaire de la meunerie française. Association Nationale de la Meunerie Française, ParisGoogle Scholar
  8. ANMF (2006) Annuaire de la meunerie française-Edition 2006. Association Nationale de la Meunerie Française, ParisGoogle Scholar
  9. ANMF (2010) Annuaire de la meunerie française-Edition 2010. Association Nationale de la Meunerie Française, ParisGoogle Scholar
  10. Baccini P, Brunner PH (1991) Metabolism of the anthroposphere. Springer-Verlag, New YorkCrossRefGoogle Scholar
  11. Barles S (2007) Feeding the city: food consumption and flow of nitrogen, Paris, 1801–1914. Sci Total Environ 375:48–58. doi: 10.1016/j.scitotenv.2006.12.003 CrossRefGoogle Scholar
  12. Billen G, Garnier J, Barles S (2012a) History of the urban environmental imprint: introduction to a multidisciplinary approach to the long-term relationships between Western cities and their hinterland. Reg Environ Change 12(2):249–253. doi: 10.1007/s10113-012-0298-1 CrossRefGoogle Scholar
  13. Billen G, Garnier J, Thieu V, Silvestre M, Barles S, Chatzimpiros P (2012b) Localising the nitrogen imprint of the Paris food supply: the potential of organic farming and changes in human diet. Biogeosciences 9(1):607–616. doi: 10.5194/bg-9-607-2012 CrossRefGoogle Scholar
  14. Block M (1851) Des charges de l’agriculture dans les divers pays de l’Europe. Paris Bouchard-Huzard, ParisGoogle Scholar
  15. Bonny S (1993) Is agriculture using more and more energy?A French case study. Agric Syst 43(1):51–66. doi: 10.1016/0308-521X(93)90092-G CrossRefGoogle Scholar
  16. Chabanon M (1955) La Meunerie française, une expérience d’économie dirigée. M.-T. Génin (Rennes, impr. de Oberthur), ParisGoogle Scholar
  17. Chanut JM, Heffer J, Mairesse J, Postel-Vinay G, École des hautes études en sciences sociales (2000) L’industrie française au milieu du 19e siècle: les enquêtes de la Statistique générale de la France. École des hautes études en sciences sociales, Ed., ParisGoogle Scholar
  18. Chatzimpiros P (2011) Les empreintes environnementales de l’approvisionnement alimentaire: Paris, ses viandes et lait, XIXe-XXIe siècles. Dissertation, Laboratoire Techniques, Territoires et Sociétés, Université Paris EstGoogle Scholar
  19. Chatzimpiros P, Barles S (2013) Nitrogen food-print: N use related to meat and dairy consumption in France. Biogeosciences 10:471–481. doi: 10.5194/bg-10-471-2013 CrossRefGoogle Scholar
  20. Combris P, Soler LG (2011) Consommation alimentaires: tendances de long terme et questions sur leur durabilité. Innov Agron 13:149–160Google Scholar
  21. Commission des Communautés européennes (1984) Bilan énergétique des industries de transformation des céréales dans le CCE. Analyse sectorielle. Direction générale Energie. octobre, SEMA-METRA Conseil, ParisGoogle Scholar
  22. Coriolis G (1844) Traité mécanique des corps solides de la mécanique des corps solides et du calcul de l’effet des machines. Carilian-Coeury et Dalmont, ParisGoogle Scholar
  23. Cuéllar AD, Webber ME (2010) Wasted food, wasted energy: the embedded energy in food waste in the United States. Environ Sci Technol 44(16):6464–6469. doi: 10.1021/es100310d CrossRefGoogle Scholar
  24. Erb KH, Haberl H, Jepsen MR, Kuemmerle T, Lindner M, Müller D, Verburg PH, Reenberg A (2013) A conceptual framework for analysing and measuring land-use intensity. Curr Opin Environ Sustain 5(5):464–470. doi: 10.1016/j.cosust.2013.07.010 CrossRefGoogle Scholar
  25. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639. doi: 10.1038/ngeo325 CrossRefGoogle Scholar
  26. FAO (2001) Food balance sheets. A handbook. FAO, RomeGoogle Scholar
  27. FAO (2014) Food balance sheets 1972, 2006. Accessed 20 Dec 2014
  28. Fischer-Kowalski M, Haberl H (eds) (2007) Socioecological transitions and global change: trajectories of social metabolism and land use. Advances in ecological economics series. Elgar, CheltenhamGoogle Scholar
  29. Flandrin JL, Montanari M (1996) Histoire de l’alimentation. Fayard, ParisGoogle Scholar
  30. France (1925) Journal officiel de la République française. Lois et décrets. circulaire du Ministre de l’Agriculture du 29 septembre 1924. Ministre de l’Agriculture, ParisGoogle Scholar
  31. Gingrich S, Niedertscheider M, Kastner T, Haberl H, Cosor G, Krausmann F, Kuemmerle T, Müller D, Reith-Musel A, Jepsen MR, Vadineanu A, Erb KH (2015) Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy 47:426–438. doi: 10.1016/j.landusepol.2015.04.027 CrossRefGoogle Scholar
  32. Hall CAS, Lavine M, Sloane J (1979) Efficiency of energy delivery systems: I. an economic and energy analysis. Environ Manag 3(6):493–504. doi: 10.1007/BF01866318 CrossRefGoogle Scholar
  33. Hall CAS, Balogh S, Murphy DJ (2009) What is the minimum EROI that a sustainable society must have? Energies 2(1):25–47. doi: 10.3390/en20100025 CrossRefGoogle Scholar
  34. INSEE (1963) Annuaire Statistique de La France. Ministère Des Finances et Des Affaires économiques, Institut National de La Statistique et Des études économiques, ParisGoogle Scholar
  35. INSEE (1971) Annuaire Statistique de La France. Ministère Des Finances et Des Affaires économiques, Institut National de La Statistique et Des études économiques, ParisGoogle Scholar
  36. Jacquemart P, Bois JF (1910) L’industrie de nos jours: technologie vulgarisée, 2e éd edn. C. Delagrave, ParisGoogle Scholar
  37. Jepsen MR, Kuemmerle T, Müller D, Erb K, Verburg PH, Haberl H, Vesterager JP, Andrič M, Antrop M, Austrheim G, Björn I, Bondeau A, Bürgi M, Bryson J, Caspar G, Cassar LF, Conrad E, Chromý P, Daugirdas V, Van Eetvelde V, Elena-Rosselló R, Gimmi U, Izakovicova Z, Jančák V, Jansson U, Kladnik D, Kozak J, Konkoly-Gyuró E, Krausmann F, Mander Ü, McDonagh J, Pärn J, Niedertscheider M, Nikodemus O, Ostapowicz K, Pérez-Soba M, Pinto-Correia T, Ribokas G, Rounsevell M, Schistou D, Schmit C, Terkenli TS, Tretvik AM, Trzepacz P, Vadineanu A, Walz A, Zhllima E, Reenberg A (2015) Transitions in European land-management regimes between 1800 and 2010. Land Use Policy 49:53–64. doi: 10.1016/j.landusepol.2015.07.003 CrossRefGoogle Scholar
  38. Kander A, Malanima P, Warde P (2014) Power to the people: energy in Europe over the last five centuries. Princeton University Press, Princeton NJCrossRefGoogle Scholar
  39. Kaplan SL (2008) Le pain maudit: retour sur la France des années oubliées, 1945–1958, vol 1. Fayard, ParisGoogle Scholar
  40. Kennedy C, Cuddihy J, Engel-Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59CrossRefGoogle Scholar
  41. Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T, Havránek M, Pataki D, Phdungsilp A, Ramaswami A, Mendez GV (2009) Greenhouse gas emissions from global cities. Environ Sci Technol 43(19):7297–7302. doi: 10.1021/es900213p CrossRefGoogle Scholar
  42. Kim E, Barles S (2012) The energy consumption of Paris and its supply areas from the eighteenth century to the present. Reg Environ Change 12(2):295–310. doi: 10.1007/s10113-011-0275-0 CrossRefGoogle Scholar
  43. Krausmann F, Schandl H, Sieferle RP (2008) Socio-ecological regime transitions in Austria and the United Kingdom. Ecol Econ 65(1):187–201. doi: 10.1016/j.ecolecon.2007.06.009 CrossRefGoogle Scholar
  44. MEDDTL (2010) PEGASE (Pétrole, Électricité, Gaz et Autres Statistiques de l’Énergie) Base de données sur la consommation et la production d’énergie du Ministère de l’Ecologie du Développement Durable, des Transport et du Logement (MEDDTL) Service de l’observation et des statistiques (SOeS). Accessed 20 Jan. 2010
  45. Ministère de l’Agriculture (1936) Statistique agricole de la France, Résultats généraux de l’enquête de 1929. Imprimerie Nationale, ParisGoogle Scholar
  46. Ministère de l’Agriculture (1970) Statistique agricole 1970, Résultats de 1969 TII. Imprimerie Nationale, ParisGoogle Scholar
  47. Ministère du Commerce, de l’Industrie, Office du travail (1900) Répartition des forces motrices à vapeur et hydrauliques en 1899, T1, II. Imprimerie Nationale, ParisGoogle Scholar
  48. Moriceau JM, Postel-Vinay G (1992) Ferme, entreprise, famille: grande exploitation et changements agricoles: les Chartier: XVIIe-XIXe siècles. Les Éditions de l’EHESS, ParisGoogle Scholar
  49. Odum EP (1975) Ecology: the link between the natural and social sciences. Holt, Rinehart and Winston, New YorkGoogle Scholar
  50. Pelletier N, Audsley E, Brodt S, Garnet T, Henriksson P, Kendall A, Kramer K, Murphy D, Nemecek T, Troell M, Tyedmers P (2011) Energy intensity of agriculture and food systems. Annu Rev Environ Resour 36(1):223–246. doi: 10.1146/annurev-environ-081710-161014 CrossRefGoogle Scholar
  51. Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174(1–2):3–28. doi: 10.1007/BF00032239 CrossRefGoogle Scholar
  52. Pimentel D, Pimentel MH (2008) Food, energy, and society, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  53. Pimentel D, Hurd LE, Bellotti AC, Forster MJ, Oka IN, Sholes OD, Whitman RJ (1973) Food production and the energy crisis. Science 182(4111):443–449. doi: 10.1126/science.182.4111.443 CrossRefGoogle Scholar
  54. Saillard É (1904) Technologie agricole: sucrerie, meunerie, boulangerie, féculerie, amidonnerie, glucoserie. JB Baillière et fils, ParisGoogle Scholar
  55. Singh SJ, Haberl H, Chertow M, Mirtl M, Schmid M (eds) (2013) Long term socio-ecological research. Springer, DordrechtGoogle Scholar
  56. Smil V (2000) Enriching the earth. MIT Press, CambridgeGoogle Scholar
  57. Smil V (2008) Energy in nature and society: general energetics of complex systems. MIT Press, CambridgeGoogle Scholar
  58. Steinhart JS, Steinhart CE (1974) Energy use in the US food system. Science 184(4134):307–316. doi: 10.1126/science.184.4134.307 CrossRefGoogle Scholar
  59. Stout BA (2012) Handbook of energy for world agriculture. Elsevier, AmsterdamGoogle Scholar
  60. Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472(7342):159–161. doi: 10.1038/472159a CrossRefGoogle Scholar
  61. Swaney DP, Santoro RL, Howarth RW, Hong B, Donaghy KP (2012) Historical changes in the food and water supply systems of the New York city metropolitan area. Reg Environ Change 12(2):363–380. doi: 10.1007/s10113-011-0266-1 CrossRefGoogle Scholar
  62. Toutain JC (1971) La consommation alimentaire en France de 1789 a 1964. Geneve, DrozGoogle Scholar
  63. Usher JA (2001) EC agricultural law. OUP Oxford University Press, New YorkGoogle Scholar
  64. Woods J, Williams A, Hughes JK, Black M, Murphy R (2010) Energy and the food system. Philos Trans R Soc B-Biol Sci 365(1554):2991–3006. doi: 10.1098/rstb.2010.0172 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.EA 2076 HABITERUniversité de Reims Champagne-ArdenneReims CedexFrance
  2. 2.Paris Interdisciplinary Energy Research Institute (LIED) UMR 8236Université Paris 7 Denis DiderotParisFrance

Personalised recommendations