Advertisement

Regional Environmental Change

, Volume 18, Issue 4, pp 951–963 | Cite as

Organic farming in the past and today: sociometabolic perspective on a Central European case study

  • Eva Fraňková
  • Claudio Cattaneo
Original Article

Abstract

This paper contributes to the vivid academic debate on potentially more sustainable models of food production, focusing especially on energy issues. Applying social metabolism and energy flow analysis, it compares the functioning of a current small-scale organic family farm in the village of Holubí Zhoř, Czech Republic, with the historical performance of the village agroecosystem in c.1840. Historical data from the Franciscan stable cadastre and current data from direct field research are employed to quantify main productive assets (land, livestock, machinery and labour) and related energy flows into energy balance indicators. Their comparison shows that the present farm lies halfway between modern mechanized and traditional organic agriculture and thus constitutes an indicative case of the limits and potentialities of present-day more sustainable farm systems. Methodologically, the study is innovative by applying the social metabolism approach on the local (village and farm) level in the context of the global North, and by advancing the use of Energy Return On Investment (EROI) indicators for agroecosystems.

Keywords

Sustainable farm systems Social metabolism Organic farming Local food systems EROI (Energy Return On Investment) in agriculture Franciscan stable cadastre 

Notes

Acknowledgements

This research was supported by the Czech Science Foundation, Grant no. 13-38994P: Quest for sustainable food production: Social and financial metabolism of selected local food systems. Claudio Cattaneo acknowledges support from the Sustainable Farm Systems project, partnership Grant 895-2011-1020 awarded by the Social Sciences and Humanities Research Council of Canada. The historical cadastral data were provided for free by the Moravian Provincial Archives in Brno (Czech Republic). We are further grateful for the help of Majka Chudíková and Lucka Jahnová with the field data collection, Bára Machová, Hana Bernardová, Kamila Svobodová and Hana Prymusová with translation and interpretation of the historical data, Martin Černý and Nikola Šťastná with data transcription, Simone Gingrich for her kind support during the analysis, and Nadia Johanisová for language corrections. We are also grateful to two anonymous referees for their valuable feedback.

Supplementary material

10113_2016_1099_MOESM1_ESM.pdf (319 kb)
Comparison of land use patterns: historical and current national scale (1843 and 2012), and case studies (village c.1840 and farm 2012). Source: own calculation based on Kušková et al. (2008); MoA (2013); ČÚZK (2015) (PDF 319 kb)

References

  1. Anglade J, Billen G, Garnier J, Makridis T, Puech T, Tittel C (2015) Nitrogen soil surface balance of organic vs conventional cash crop farming in the Seine watershed. Agric Syst 139:82–92. doi: 10.1016/j.agsy.2015.06.006 CrossRefGoogle Scholar
  2. Douthwaite R (1996) Short circuit: strengthening local economies for security in an unstable world. Lilliput Press, Dublin. doi: 10.1604/9781874675600 Google Scholar
  3. Edelman M, Weis T, Baviskar A, Borras SM Jr, Holt-Giménez E, Kandiyoti D, Wolford W (2014) Introduction: critical perspectives on food sovereignty. J Peasant Stud 41:911–931. doi: 10.1080/03066150.2014.963568 CrossRefGoogle Scholar
  4. Erb KH, Lauk Ch, Kastner T, Mayer A, Theurl MC, Haberl H (2016) Exploring the biophysical option space for feeding the world without deforestation. Nat Commun 7:11382. doi: 10.1038/ncomms11382 CrossRefGoogle Scholar
  5. Fischer-Kowalski M, Haberl H (eds) (2007) Socioecological transitions and global change: trajectories of social metabolism and land use. Edward Elgar Publishing, Cheltenham. doi: 10.4337/9781847209436 Google Scholar
  6. Fischer-Kowalski Singh S J, Lauk C, Remesch A, Ringhofer L, Grünbühel CM (2011) Sociometabolic transitions in subsistence communities: Boserup revisited in four comparative case studies. Hum Ecol Rev 18(2):147–158Google Scholar
  7. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi: 10.1038/nature10452 CrossRefGoogle Scholar
  8. Galán E, Padró R, Marco I, Tello E, Cunfer G, Guzmán GI, González de Molina M, Krausmann F, Gingrich S, Sacristán V, Moreno-Delgado D (2016) Widening the analysis of energy return on investment (EROI) in agro-ecosystems: socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999). Ecol Model 336:3–25. doi: 10.1016/j.ecolmodel.2016.05.012 CrossRefGoogle Scholar
  9. Georgescu-Roegen N (1971) The entropy law and the economic process. Harvard University Press, Cambridge, Massachusetts. doi: 10.4159/harvard.9780674281653 CrossRefGoogle Scholar
  10. Giampietro M (2003) Multi-scale integrated analysis of agroecosystems. CRC Press, Boca Raton. doi: 10.1201/9780203503607 CrossRefGoogle Scholar
  11. Giampietro M, Mayumi K, Sorman AH (2012) The metabolic pattern of societies: where economists fall short. Routledge, LondonGoogle Scholar
  12. Giampietro M, Mayumi K, Sorman AH (2013) Energy analysis for a sustainable future: multi-scale integrated analysis of societal and ecosystem metabolism. Routledge, LondonGoogle Scholar
  13. Gingrich S, Haidvogl G, Krausmann F, Preis S, Garcia-Ruiz R (2015) Providing food while sustaining soil fertility in two pre-industrial Alpine agroecosystems. Hum Ecol 43:395–410. doi: 10.1007/s10745-015-9754-0 CrossRefGoogle Scholar
  14. Gingrich S, Marco I, Padró R, Aguilera E, Cattaneo C, Watson A, McFayden J (forthcoming) What drove the agricultural energy transition? Comparative analysis of long-term trends in seven case studies across the Atlantic. Submitted to this issue Regional Environmental ChangeGoogle Scholar
  15. Gliessman SR (2015) Agroecology. The ecology of sustainable food systems, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  16. Gomiero T, Giampietro M, Mayumi K (2006) Facing complexity on agro-ecosystems: a new approach to farming system analysis. Int J Agric Resour Gov Ecol 5:116–144. doi: 10.1504/IJARGE.2006.009160 Google Scholar
  17. Gomiero T, Pimentel D, Paoletti MG (2011) Is there a need for a more sustainable agriculture? Crit Rev Plant Sci 30:6–23. doi: 10.1080/07352689.2011.553515 CrossRefGoogle Scholar
  18. González De Molina M, Toledo VM (2014) The social metabolism: a socio-ecological theory of historical change. Springer International Publishing, Switzerland. doi: 10.1007/978-3-319-06358-4 CrossRefGoogle Scholar
  19. Goodman D, Dupuis EM, Goodman MK (2014) Alternative food networks. Knowledge, practice, and politics. Routledge, New YorkGoogle Scholar
  20. Grešková Kušková P (2013) A case study of the Czech agriculture since 1918 in a socio-metabolic perspective. from land reform through nationalisation to privatisation. Land Use Policy 30:592–603. doi: 10.1016/j.landusepol.2012.05.009 CrossRefGoogle Scholar
  21. Grešlová P, Gingrich S, Krausmann F, Chromý P, Jančák V (2015) Social metabolism of Czech agriculture in the period 1830–2010. AUC Geogr 50:23–35. doi: 10.14712/23361980.2015.84 CrossRefGoogle Scholar
  22. Guzmán GI, Gonzalez de Molina M (2009) Preindustrial agriculture versus organic agriculture: the land cost of sustainability. Land Use Policy 26:502–510. doi: 10.1016/j.landusepol.2008.07.004 CrossRefGoogle Scholar
  23. Guzmán GI, Gonzalez de Molina M (2016) Energy in agroecosystems: a tool for assessing sustainability. CRC Press, Boca RatonCrossRefGoogle Scholar
  24. Haas W, Krausmann F (2015). Transition-related changes in the metabolic profile of an Austrian rural village. Working paper social ecology 153, IFF Social Ecology, ViennaGoogle Scholar
  25. Haberl H, Krausmann F (2007) The local base of the historical agrarian-industrial transition, and the interaction between scales. In: Fischer-Kowalski M, Haberl H, (Eds.) Socio-ecological transitions and global change: Trajectories of social metabolism and land use. Edward Elgar: Cheltenham, UK, Northampton, USA. pp. 116–138. doi: 10.4337/9781847209436.00012
  26. Hall CA (2011) Introduction to special issue on new studies in EROI (Energy Return on Investment). Sustainability 3:1773–1777. doi: 10.3390/su3101773 CrossRefGoogle Scholar
  27. Hall CA, Cleveland CJ, Kaufmann R (1992) Energy and resource quality. University of Colorado, Niwot, ColoradoGoogle Scholar
  28. Hall CA, Balogh S, Murphy DJ (2009) What is the minimum EROI that a sustainable society must have? Energies 2:25–47. doi: 10.3390/en20100025 CrossRefGoogle Scholar
  29. Hitschmann HH (1891) Vademecum für den Landwirth. M, Perles, WienGoogle Scholar
  30. Holt-Giménez E, Altieri MA (2013) Agroecology, food sovereignty, and the new green revolution. Agroecol Sustain Food Syst 37:90–102. doi: 10.1080/10440046.2012.716388 Google Scholar
  31. Krausmann F (2004) Milk, manure, and muscle power. livestock and the transformation of preindustrial agriculture in central Europe. Hum Ecol 32:735–772. doi: 10.1007/s10745-004-6834-y CrossRefGoogle Scholar
  32. Kušková P, Gingrich S, Krausmann F (2008) Long term changes in social metabolism and land use in Czechoslovakia, 1830–2000: an energy transition under changing political regimes. Ecol Econ 68:394–407. doi: 10.1016/j.ecolecon.2008.04.006 CrossRefGoogle Scholar
  33. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi: 10.1126/science.1097396 CrossRefGoogle Scholar
  34. Lotka AJ (1922) Contribution to the energetics of evolution. Proc Natl Acad Sci 8:147–151. doi: 10.1073/pnas.8.6.147 CrossRefGoogle Scholar
  35. Martinez S, Hand MS, Da Pra M, Pollack S, Ralston K, Smith T, Vogel S, Clark S, Lohr L, Low SA, Newman C (2010) Local food systems: concepts, impacts, and issues. ERR-97, U.S. Department of Agriculture, Economic Research Service. http://www.ers.usda.gov/Publications/ERR97/ERR97.pdf. Accessed 12 June 2012
  36. Mayer A, Schaffartzik A, Haas W, Sepulveda AR (2015) Patterns of global biomass trade and the implications for food sovereignty and socio-environmental conflict. EJOLT Report No. 20. doi: 10.13140/2.1.1442.5128
  37. MoA (2013) Organic Framing in the Czech Republic. Yearbook 2012. [in Czech with English summary] Ministry of Agriculture, Prague.Google Scholar
  38. MPAB (2016) Zhorz Holuby. Catastral Schätzungs Operat, signature 715, filing (“Karton”) 280, file (“značka”) D8, fund “Stable cadastre—Schätzungoperaten”. [Archive material] Moravian Provincial Archives in Brno, Czech RepublicGoogle Scholar
  39. Pimentel D, Pimentel M (2008) Food, energy, and society, 3d edn. CRC Press, Boca Raton, USAGoogle Scholar
  40. Pretty JN, Noble AD, Bossio D, Dixon J, Hine RE, de Vries FWP, Morison JI (2006) Resource-conserving agriculture increases yields in developing countries. Environ Sci Technol 40:1114–1119. doi: 10.1021/es051670d CrossRefGoogle Scholar
  41. Schaschl E. (2007) Rekonstruktion der Arbeitszeit in der Landwirtschaft im 19. Jahrhundert am Beispiel von Theyern in Niederösterreich. Social ecology Working paper 96, Institute of Social Ecology, IFF—Faculty for interdisciplinary studies, Klagenfurt University, Vienna, pp. 1–174Google Scholar
  42. Scheidel A, Giampietro M, Ramos-Martin J (2013) Self-sufficiency or surplus: conflicting local and national rural development goals in Cambodia. Land use policy 34:342–352. doi: 10.1016/j.landusepol.2013.04.009 CrossRefGoogle Scholar
  43. Seyfang G (2007) Cultivating carrots and community: local organic food and sustainable consumption. Environ Values 16:105–123. doi: 10.3197/096327107780160346 CrossRefGoogle Scholar
  44. Singh SJ, Haberl H, Chertow M, Mirtl M, Schmid M (eds) (2013) Long term socio-ecological research. Studies in society-nature interactions across spatial and temporal scales. Springer, BerlinGoogle Scholar
  45. Smil V (2013) Harvesting the biosphere. What we have taken from nature. Massachusetts Institute of Technology, Cambridge, Massachusetts. doi: 10.1111/j.1728-4457.2013.00617.x Google Scholar
  46. Svobodová K (2010) Stav pěstování zemědělských plodin a chovu hospodářských zvířat na jižní a jihovýchodní Moravě v polovině 19. století ve světle stabilního katastru [The state of the growing of the agricultural plants and of the farm animals breeding on the south and south-east Moravia in the half of the 19th century in the light of the stable land-registry]. Dissertation (in Czech). Department of History, Faculty of Arts, Masaryk University in Brno, Czech Republic. https://is.muni.cz/th/8274/ff_d?furl=%2Fth%2F8274%2Fff_d;so=nx;lang=en. Accessed 18 April 2016
  47. Tello E, Garrabou R, Cussó X, Ramón Olarieta J, Galán E (2012) Fertilizing methods and nutrient balance at the end of traditional organic agriculture in the Mediterranean bioregion: Catalonia (Spain) in the 1860s. Hum Ecol 40:369–383. doi: 10.1007/s10745-012-9485-4 CrossRefGoogle Scholar
  48. Tello E, Galán E, Sacristán V, Cunfer G, Guzmán GI, González de Molina M, Krausmann F, Gingrich S, Padró R, Marco I, Moreno-Delgado D (2016) Opening the black box of energy throughputs in farm systems: a decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès County, Catalonia, c.1860 and 1999). Ecol Econ 121:160–174. doi: 10.1016/j.ecolecon.2015.11.012 CrossRefGoogle Scholar
  49. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264. doi: 10.1073/pnas.1116437108 CrossRefGoogle Scholar
  50. Weis T (2010) The accelerating biophysical contradictions of industrial capitalist agriculture. J Agrar Change 10:315–341. doi: 10.1111/j.1471-0366.2010.00273.x CrossRefGoogle Scholar
  51. West TO, Marland G (2002) A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric Ecosyst Environ 91:217–232. doi: 10.1016/S0167-8809(01)00233-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Environmental Studies, Faculty of Social StudiesMasaryk UniversityBrnoCzech Republic
  2. 2.Barcelona Institute of Regional and Metropolitan StudiesAutonomous University of BarcelonaBarcelonaSpain

Personalised recommendations