Skip to main content

Climate change and lizards: changing species' geographic ranges in Patagonia

Abstract

Ectothermic organisms strongly depend on temperature, making them an excellent model to study the impact of global climatic change (GCC). Under global warming, species may be forced to move toward colder environments, such as higher latitudes, higher elevations or both. However, several studies show that responses may vary significantly in different groups of species. Therefore, it is unclear whether species’ current distribution range sizes will be affected in future climatic scenarios. In addition to the specific possible effect of range size changes, the potential consequences of distributional range shifts also should be considered. Here, our aim is to assess whether GCC may affect a group of Liolaemus lizard species based on their current geographic distribution range size and whether the effect is uniform across all species using species distribution models (SDMs). Our results show that range boundaries of the fourteen species switch toward higher altitude and latitude in future scenarios. Additionally, there is not a unique pattern in terms of increase or decrease in potential range for lizards in Patagonia in future scenarios. Finally, our results show that the original distribution range size is determinant for the resultant SDMs projections, suggesting that species with a high degree of endemicity may be susceptible to a greater impact of GCC.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abdala CS (2007) Phylogeny of the boulengeri group (Iguania: Liolaemidae, Liolaemus) based on morphological and molecular characters. Zootaxa 1538:1–84

    Google Scholar 

  2. Abdala CS, Quinteros AS (2014) Los últimos 30 años de estudios de la familia de lagartijas más diversa de Argentina. Actualización taxonómica y sistemática de Liolaemidae. Cuadernos de Herpetología 28(2):55–82

    Google Scholar 

  3. Abdala CS, Acosta JL, Acosta JC, Álvarez BB, Arias F, Avila LJ, Blanco MG, Bonino MF, Boretto JM et al (2012) Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetología 26:215–247

    Google Scholar 

  4. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi:10.1111/j.1365-2699.2006.01584.x

    Google Scholar 

  5. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397. doi:10.1126/science.1131758

    Google Scholar 

  6. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538. doi:10.1111/j.1466-822X.2005.00182.x

    Google Scholar 

  7. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming, the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. doi:10.1111/j.1365-2699.2006.01482.x

    Google Scholar 

  8. Avila LJ, Morando M, Sites JW Jr (2006) Congeneric phylogeography: hypothesizing species limits and evolutionary processes in Patagonian lizards of the Liolaemus boulengeri group (Squamata: Liolaemini). Biol J Linn Soc 89:241–275. doi:10.1111/j.1095-8312.2006.00666.x

    Google Scholar 

  9. Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci USA 108:2306–2311. doi:10.1073/pnas.1007217108

    CAS  Google Scholar 

  10. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Google Scholar 

  11. Bogert CM (1949) Thermoregulation in reptiles, a factor in evolution. Evolution 3:195–211

    CAS  Google Scholar 

  12. Böhm M, Collen B, Baillie JEM et al (2013) The conservation status of the world’s reptiles. Biol Conserv 157:372–385. doi:10.1016/j.biocon.2012.07.015

    Google Scholar 

  13. Bonino MF, Azócar DLM, Tulli MJ, Abdala CS, Perotti MG, Cruz FB (2011) Running in cold weather: morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J Exp Zool A 315:495–503. doi:10.1002/jez.697

    Google Scholar 

  14. Breitman MF, Avila LJ, Sites JW Jr, Morando M (2011) Lizards from the end of the world: phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini). Mol Phylogenet Evol 59:364–376. doi:10.1016/j.ympev.2011.02.008

    Google Scholar 

  15. Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054. doi:10.1111/j.1461-0248.2010.01479.x

    Google Scholar 

  16. Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Yeong Ryu H, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ (2013) How does climate change cause extinction? Proc R Soc Biol Sci. doi:10.1098/rspb.2012.1890

    Google Scholar 

  17. Caruso NM, Sears MW, Adams DC, Lips KR (2014) Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob Change Biol 20:1751–1759. doi:10.1111/gcb.12550

    Google Scholar 

  18. Cei JM (1986) Reptiles del centro, centro-oeste y sur de la Argentina. Monogr. IV Museo Regionale di Scienze Naturali Bollettino, Torino

  19. Cei JM (1993) Reptiles del Noroeste, Nordeste y Este de la Argentina. Monogr. XIV Museo Regionale di Scienze Naturali Bollettino, Torino

  20. Chamaille-Jammes S, Massot M, Aragon P, Clobert J (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Change Biol 12:392–402. doi:10.1111/j.1365-2486.2005.01088.x

    Google Scholar 

  21. Chejanovski Z, Wiens JJ (2014) Climatic niche breadth and species richness in temperate treefrogs. J Biogeogr. doi:10.1111/jbi.12345

    Google Scholar 

  22. Corbalán V, Tognellia MF, Scolaro JA, Roig-Juñent SA (2011) Lizards as conservation targets in Argentinean Patagonia. J Nat Conserv 19:60–67. doi:10.1016/j.jnc.2010.05.004

    Google Scholar 

  23. Cruz FB, Fitzgerald LA, Espinoza RE, Schulte JA II (2005) The importance of phylogenetic scale in tests of Bergmann’s and Rapoport’s rules: lessons from a clade of South American lizards. J Evol Biol 18:1559–1574. doi:10.1111/j.1420-9101.2005.00936.x

    CAS  Google Scholar 

  24. Cussac V, Ortubay S, Iglesias G, Milano D, Latuca ME, Barriga JP, Battini M, Gross M (2004) The distribution of South American galaxiid fishes: the role of biological traits and post-glacial history. J Biogeogr 31:103–121. doi:10.1046/j.0305-0270.2003.01000.x

    Google Scholar 

  25. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786. doi:10.1038/35842

    CAS  Google Scholar 

  26. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. doi:10.1073/pnas.0709472105

    CAS  Google Scholar 

  27. Development Core Team R (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  28. Elith J (2002) Predicting the distribution of plants, PhD thesis. University of Melbourne, Melbourne

  29. Elith J, Leathwick JR (2009) The contribution of species distribution modelling to conservation prioritization. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford

    Google Scholar 

  30. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Google Scholar 

  31. Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601. doi:10.1111/j.1472-4642.2009.00566.x

    Google Scholar 

  32. Etheridge R, Espinoza R (2000) Taxonomy of the Liolaeminae (Squamata: Iguania: Tropiduridae) and a semi-annotated bibliography. Smithson Herpetol Inf Service 126:1–64

    Google Scholar 

  33. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat. 125:1–15

    Google Scholar 

  34. Fergnani P, Sackmann P, Ruggiero A (2010) Richness–environment relationships in epigeic ants across the Subantarctic–Patagonian transition zone. Insect Conserv Divers 3:278–290

    Google Scholar 

  35. Fontanella FM, Olave M, Avila LJ, Sites JR, Morando M (2012) Molecular dating and diversification of the South American lizard genus Liolaemus (subgenus Eulaemus) based on nuclear and mitochondrial DNA sequences. Zool J Linn Soc Lond 164:825–835. doi:10.1111/j.1096-3642.2011.00786.x

    Google Scholar 

  36. Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetic independent contrasts. Syst Biol 41:18–32. doi:10.1093/sysbio/41.1.18

    Google Scholar 

  37. Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292. doi:10.1093/sysbio/42.3.265

    Google Scholar 

  38. Grigera D, Úbeda C (1997) Recategorización del estado de conservación de la fauna de la Patagonia argentina, Antártida e Islas del Atlántico Sur: un análisis de sus resultados. Gayana Zool 61:29–41

    Google Scholar 

  39. Gunderson AR, Leal M (2012) Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard. Funct Ecol 26:783–793. doi:10.1111/j.1365-2435.2012.01987.x

    Google Scholar 

  40. Hanna L (2012) Saving a Millos species. Extinction risk from climate change. Island Press, Washington

    Google Scholar 

  41. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. doi:10.1111/j.1461-0248.2009.01355.x

    Google Scholar 

  42. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  43. Hellmich WC (1951) On ecotypic and autotypic characters, a contribution to the knowledge of the evolution of the genus Liolaemus (Iguanidae). Evolution 5:359–369

    Google Scholar 

  44. Henle K, Dick D, Harpke A, Kuhn I, Schweiger O, Settele J (2008) Climate change impacts on European amphibians and reptiles. Convention on the Conservation of European Wildlife and Natural Habitat, Strasbourg

    Google Scholar 

  45. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785. doi:10.1111/j.0906-7590.2006.04700.x

    Google Scholar 

  46. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455. doi:10.1111/j.1365-2486.2006.01116.x

    Google Scholar 

  47. Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B Biol Sci 269:2163–2171. doi:10.1098/rspb.2002.2134

    CAS  Google Scholar 

  48. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. doi:10.1126/science.1189930

    CAS  Google Scholar 

  49. Hof C, Levinsky I, Araújo MB, Rahbek C (2011) Rethinking species’ ability to cope with rapid climate change. Glob Change Biol 17:2987–2990. doi:10.1111/j.1365-2486.2011.02418.x

    Google Scholar 

  50. Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  51. Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of reptilia, vol 12. Academic Press, New York, pp 25–74

    Google Scholar 

  52. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366. doi:10.1093/icb/19.1.357

    Google Scholar 

  53. Huey RB, Tewksbury JJ (2009) Can behavior douse the fire of climate warming? Proc Natl Acad Sci USA 106:3647–3648. doi:10.1073/pnas.0900934106

    CAS  Google Scholar 

  54. Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia: a null model approach. Am Nat 161:357–366

    Google Scholar 

  55. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Álvarez Pérez HJ, Garland T Jr (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B Biol Sci 276:1939–1948. doi:10.1098/rspb.2008.1957

    Google Scholar 

  56. Huey RB, Losos JB, Moritz C (2010) Are lizards toast? Science 328:832–833. doi:10.1126/science.1190374

    CAS  Google Scholar 

  57. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. doi:10.1016/S0169-5347(99)01764-4

    Google Scholar 

  58. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794. doi:10.1111/j.1365-2664.2005.01082.x

    Google Scholar 

  59. Ibargüengoytía NR, Casalins LM (2007) Reproductive biology of the southernmost gecko Homonota darwini: convergent life-history patterns among southern hemisphere reptiles living in harsh environments. J Herpetol 41:72–80. http://dx.doi.org/10.1670/0022-1511(2007)41[72:RBOTSG]2.0.CO;2

    Google Scholar 

  60. Ibargüengoytía NR, Medina SM, Fernández JB, Gutiérrez JA, Tappari F, Scolaro A (2010) Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J Therm Biol 35:21–27. doi:10.1016/j.jtherbio.2009.10.003

    Google Scholar 

  61. IPCC (Intergovernmental Panel on Climate Change) (2000) Special report on emissions scenarios. Nakicenovic N (ed). Cambridge University Press, Cambridge

  62. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning Z, Chen Z, Marquis M (eds). Cambridge University Press: Cambridge

  63. Janzen FJ (1994) Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci USA 91:7487–7490

    CAS  Google Scholar 

  64. Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc Natl Acad Sci USA 106:3835–3840. doi:10.1073/pnas.0808913106

    CAS  Google Scholar 

  65. Kingsolver JG (2009) The well-temperatured biologist. Am Nat. 174:755–768

    Google Scholar 

  66. Kingsolver JG, Watt WB (1983) Thermoregulatory strategies of Colias butterflies: thermal stress and the limits to adaptation in temporally varying environments. Am Nat 121:32–55

    Google Scholar 

  67. Lobo F, Espinoza RE, Quinteros S (2010) A critical review and systematic discussion of recent classification proposals for liolaemid lizards. Zootaxa 2549:1–30

    Google Scholar 

  68. Losos JB, Spiller DA (1999) Differential colonization success and asymmetrical interactions between two lizard species. Ecology 80:252–258. http://dx.doi.org/10.1890/0012-9658(1999)080[0252:DCSAAI]2.0.CO;2

    Google Scholar 

  69. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.74. http://mesquiteproject.org

  70. Manel S, Williams HC, Ormerod S (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931. doi:10.1046/j.1365-2664.2001.00647.x

    Google Scholar 

  71. Martins EP (1996) Phylogenies and the comparative method in animal behavior. Oxford University Press, Oxford

    Google Scholar 

  72. McCain CM, King SR (2014) Body size and activity times mediate mammalian responses to climate change. Glob Change Biol 20:1760–1769. doi:10.1111/gcb.12499

    Google Scholar 

  73. Menéndez R, González-Megías A, Jay-Robert P, Marquéz-Ferrando R (2014) Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Glob Ecol Biogeogr 23:646–657. doi:10.1111/geb.12142

    Google Scholar 

  74. Meserve PL, Kelt DA, Milstead WB, Gutiérrez JR (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646. doi:10.1641/0006-3568(2003)053[0633:TYOSTA]2.0.CO;2

    Google Scholar 

  75. Midford PE, Garland T Jr, Maddison WP (2003) PDAP package. Version 1.15. http://mesquiteproject.org

  76. Midgley GF, Hannah L, Millar D, Rutherford MC, Powrie LW (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451. doi:10.1046/j.1466-822X.2002.00307.x

    Google Scholar 

  77. Mitchell NJ, Kearney MR, Nelson NJ, Porter WP (2008) Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? Proc R Soc B Biol Sci 275:2185–2193. doi:10.1098/rspb.2008.0438

    Google Scholar 

  78. Morando M, Avila LJ, Sites JW Jr (2003) Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongatus–kriegi complex (Squamata: Liolaemidae) in Andean–Patagonian South America. Syst Biol 52:159–185. doi:10.1080/10635150390192717

    Google Scholar 

  79. Moreno Azocar DL, Vanhooydonck B, Bonino MF, Perotti MG, Abdala CS, Schulte JA, Cruz FB (2013) Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards. Oecologia 171:773–788. doi:10.1007/s00442-012-2447-0

    Google Scholar 

  80. Munguía M, Peterson AT, Sánchez-Cordero V (2008) Dispersal limitation and eographical distributions of mammal species. J Biogeogr 35:1879–1887. doi:10.1111/j.1365-2699.2008.01921.x

    Google Scholar 

  81. Overgaard J, Kearney MR, Hoffmann AA (2014) Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob Change Biol 20:1738–1750. doi:10.1111/gcb.12521

    Google Scholar 

  82. Parmesan C (1996) Climate and species’ range. Nature 382:765–766

    CAS  Google Scholar 

  83. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872. doi:10.1111/j.1365-2486.2007.01404.x

    Google Scholar 

  84. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    CAS  Google Scholar 

  85. Parmesan C, Ryrholm N, Stefanescu C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583. doi:10.1038/21181

    CAS  Google Scholar 

  86. Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450. doi:10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2

    Google Scholar 

  87. Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio R (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  88. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245. doi:10.1016/S0304-3800(00)00322-7

    Google Scholar 

  89. Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. doi:10.1111/j.1365-2699.2006.01460.x

    Google Scholar 

  90. Penman TD, Pike DA, Webb JK, Shine R (2010) Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers Distrib 16:109–118. doi:10.1111/j.1472-4642.2009.00619.x

    Google Scholar 

  91. Perotti MG, Diéguez MC, Jara FG (2005) Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Rev Chil Hist Nat 78:723–737. doi:10.4067/S0716-078X2005000400011

    Google Scholar 

  92. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Google Scholar 

  93. Pike DA, Antworth RL, Stiner JC (2006) Earlier nesting contributes to shorter nesting seasons for the loggerhead turtle, Caretta caretta. J Herpetol 40:91–94. doi:10.1670/100-05N.1

    Google Scholar 

  94. Pounds JA, Fogden MLP, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615. doi:10.1038/19297

    CAS  Google Scholar 

  95. Rabassa J (2008) The late Cenozoic of Patagonia and Tierra del Fuego. Developments in quaternary sciences, vol 11. Series editor: JJM van der Meer. Elsevier, Oxford, 524 p

  96. Rabassa J, Coronato AM, Salemme M (2005) Chronology of the late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). J South Am Earth Sci 20:81–103. doi:10.1016/j.jsames.2005.07.004

    Google Scholar 

  97. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. doi:10.1111/j.2041-210X.2011.00169.x

    Google Scholar 

  98. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    CAS  Google Scholar 

  99. Rugiero L, Milana G, Petrozzi F, Capula M, Luiselli L (2013) Climate-change-related shifts in annual phenology of a temperate snake during the last 20 years. Acta Oecol 51:42–48. doi:10.1016/j.actao.2013.05.005

    Google Scholar 

  100. Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. J Clim 17:4099–4107. doi:10.1175/1520-0442(2004)017<4099:OTACIT>2.0.CO;2

    Google Scholar 

  101. Schulte JA II (2013) Undersampling taxa will underestimate molecular divergence dates: an example from the South American lizard clade Liolaemini. Int J Evol Biol 2013:1–12. doi:10.1155/2013/628467

    Google Scholar 

  102. Schulte JA II, Macey JR, Espinoza RE, Larson A (2000) Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biol J Linn Soc 69:75–102. doi:10.1111/j.1095-8312.2000.tb01670.x

    Google Scholar 

  103. Simmons AM (2014) Playing smart vs. playing safe: the joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments. J Evol Biol 27:1047–1056. doi:10.1111/jeb.12378

    Google Scholar 

  104. Sinervo B, Méndez de la Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. doi:10.1126/science.1184695

    CAS  Google Scholar 

  105. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller HL Jr, Chen Z (2007) Climate Change 2007—the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  106. Spiller DA, Losos JB, Schoener TW (1998) Impact of a catastrophic hurricane on island populations. Science 281:695–697. doi:10.1126/science.281.5377.695

    CAS  Google Scholar 

  107. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci USA 111:5610–5615. doi:10.1073/pnas.1316145111

    CAS  Google Scholar 

  108. Svenning JC, Kerr J, Rahbek C (2009) Predicting future shifts in species diversity. Ecography 32:3–4. doi:10.1111/j.1600-0587.2009.06024.x

    Google Scholar 

  109. Telemeco RS, Elphick MJ, Shine R (2009) Nesting lizards (Bassiana duperreyi) compensate partly, but not completely, for climate change. Ecology 90:17–22. doi:10.1890/08-1452.1

    Google Scholar 

  110. Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495. doi:10.1111/j.1472-4642.2010.00642.x

    Google Scholar 

  111. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    CAS  Google Scholar 

  112. Thomas JA, Telfer MG, Roy DB et al (2004) Comparative losses of british butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi:10.1126/science.1095046

    CAS  Google Scholar 

  113. Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416. doi:10.1016/j.tree.2006.05.012

    Google Scholar 

  114. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899. doi:10.1126/science.1069270

    CAS  Google Scholar 

  115. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027. doi:10.1111/j.1365-2486.2004.00859.x

    Google Scholar 

  116. Thuiller W, Araújo MB, Lavorel S (2003) Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. J Veg Sci 14:669–680. doi:10.1111/j.1654-1103.2003.tb02199.x

    Google Scholar 

  117. Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species distributions: future challenges. Perspect Plant Ecol 9:137–152. doi:10.1016/j.ppees.2007.09.004

    Google Scholar 

  118. Tucker MA, Ord TJ, Rogers TL (2014) Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Glob Ecol Biogeogr. doi:10.1111/geb.1219

    Google Scholar 

  119. Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond B Biol Sci 272:2561–2569. doi:10.1098/rspb.2005.3356

    Google Scholar 

  120. Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate Change. Nature 416:389–395. doi:10.1038/416389a

    CAS  Google Scholar 

  121. Werenkraut V, Ruggiero A (2013) Altitudinal variation in the taxonomic composition of ground-dwelling beetle assemblages in NW Patagonia, Argentina: environmental correlates at regional and local scales. Insect Conserv Divers 6:82–92

    Google Scholar 

  122. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. doi:10.1146/annurev.ecolsys.36.102803.095431

    Google Scholar 

  123. Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc Lond B Biol Sci 270:1887–1892. doi:10.1098/rspb.2003.2464

    Google Scholar 

  124. Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146. doi:10.1111/j.1461-0248.2005.00824.x

    Google Scholar 

  125. Winkler DW, Dunn PO, McCulloch CE (2002) Predicting the effects of climate change on avian life-history traits. Proc Natl Acad Sci USA 99:13595–13599. doi:10.1073/pnas.212251999

    CAS  Google Scholar 

  126. Yang H, Wu M, Liu W, Zhang Z, Zhang N, Wan S (2011) Community structure and composition in response to climate change in a temperate steppe. Glob Change Biol 17:452–465. doi:10.1111/j.1365-2486.2010.02253.x

    Google Scholar 

Download references

Acknowledgments

We appreciate the critical reading of early versions of this manuscript to Javier Nori. We thank Cristian Abdala and Valeria Corbalán for informing us about many presence localities of the species studied here. R. Sehman and M. G. Perotti gave valuable help in the field. PICT (ANPCyT) 01205 to F.B.C. supported fieldwork. M.F.B. and D.L.M.A. were supported by a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) fellowship. We thank L. Buria, M Faillá, S. Montanelli, and L.B. Ortega from National Parks of Argentina (A.P.N.), Neuquen, Río Negro, Chubut and Santa Cruz provinces, respectively, for collecting permits.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcelo F. Bonino.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonino, M.F., Moreno Azócar, D.L., Schulte, J.A. et al. Climate change and lizards: changing species' geographic ranges in Patagonia. Reg Environ Change 15, 1121–1132 (2015). https://doi.org/10.1007/s10113-014-0693-x

Download citation

Keywords

  • Patagonia
  • Lizards
  • Liolaemus
  • Species distribution models (SDMs)
  • Global climate change
  • Range of distribution