Skip to main content

Impacts of climate change on biodiversity in Israel: an expert assessment approach

Abstract

The Mediterranean region is both a global biodiversity hot spot and one of the biomes most strongly affected by human activities. Ecologists and land managers are increasingly required to advise on threats to biodiversity under foreseeable climate change. We used expert surveys to evaluate current understanding and uncertainties regarding climate change impacts on biodiversity in terrestrial, inland freshwater, and marine ecosystems of Israel. Finally, we propose a response strategy toward minimizing these changes. The surveys and the published literature indicated that the main climate change impacts in Israel include ongoing deterioration of freshwater habitats, decline of shrubland and woodland areas, and increased frequency and severity of forest fires. For the Mediterranean Sea, the surveys predict further introduction and establishment of invasive species from the Red Sea, accelerated erosion of coastal rocky habitat, and collapse of coastal rocky platforms. In the Gulf of Aqaba, Red Sea, corals may be resilient to foreseen climate change due to their high tolerance for rising water temperatures. Despite these predictions, science-based knowledge regarding the contribution of management toward minimizing climate change impacts on biodiversity is still lacking. Habitat loss, degradation, and fragmentation are presently the primary and immediate threats to natural ecosystems in Israel. Protection of natural ecosystems, including local refugia, must be intensified to maintain existing biodiversity under pressure from mounting urban development and climate change. This protection policy should include ecological corridors to minimize the consequences of fragmentation of existing natural habitats for species survival. A longer-term strategy should mandate connectivity across environmental and climatic gradients to maintain natural resilience by allowing reorganization of natural ecosystems facing climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adler M, Ziglio E (1996) Gazing into the oracle. Jessica Kingsley Publishers, Bristol

    Google Scholar 

  2. Anderegg WRL, Kane D, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36. doi:10.1038/nclimate1635

    Article  Google Scholar 

  3. Baker A, Starger C, McClanahan T et al (2004) Corals’ adaptive response to climate. Nature 430(74):1. doi:10.1038/430741a

    Google Scholar 

  4. Beche L, Connors P, Resh V et al (2009) Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32:778–788. doi:10.1111/j.1600-0587.2009.05612.x

    Article  Google Scholar 

  5. Bellan-Santini D, Bellan G (2000) Distribution and peculiarities of Mediterranean marine biocoenosis. Biol Mar Mediter 7:67–80

    Google Scholar 

  6. Ben Rais Lasram F, Guilhaumon F, Mouillot D (2009) Fish diversity patterns in the Mediterranean Sea: deviations from a mid-domain model. Mar Ecol Prog Ser 376:253–267. doi:10.3354/meps07786

    Article  Google Scholar 

  7. Ben Rais Lasram F, Guilhaumon F, Albouy C, Somotz S, Thuiller W, Mouillot D (2010) The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Global Change Biol 16:3233–3245. doi:10.1111/j.1365-2486.2010.02224.x

    Article  Google Scholar 

  8. Bennett G, Mulongoy KJ (2006) Review of experience with ecological networks, corridors and buffer zones. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series No. 23, 100 pp

  9. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol 273:2305–2312. doi:10.1098/rspb.2006.3567

    Article  Google Scholar 

  10. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460. doi:10.1016/j.tree.2008.03.011

    Article  Google Scholar 

  11. Butchart SHM et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi:10.1126/science.1187512

    Article  CAS  Google Scholar 

  12. Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478. doi:10.1073/pnas.1010070108

    Article  CAS  Google Scholar 

  13. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432

    Article  CAS  Google Scholar 

  14. Coll M, Piroddi C, Steenbeek J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5:e11842. doi:10.1371/journal.pone.0011842

    Article  Google Scholar 

  15. Colombaroli D, Marchetto A, Tinner W (2007) Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J Ecol 95:755–770. doi:10.1111/j.1365-2745.2007.01240.x

    Article  Google Scholar 

  16. Cook J, Nuccitelli D, Green SA, Richardson M, Winkler B, Painting R, Way R, Jacobs P, Skuce A (2013) Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ Res Lett 8:024024. doi:10.1088/1748-9326/8/2/024024

    Article  Google Scholar 

  17. Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep sea. Ecol Lett 7:821–828. doi:10.1111/j.1461-0248.2004.00634.x

    Article  Google Scholar 

  18. Delitti W, Ferran A, Trabaud L et al (2005) Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. Plant composition and productivity. Plant Ecol 177:57–70. doi:10.1007/s11258-005-2140-z

    Article  Google Scholar 

  19. Dorman M, Svoray T, Perevolotsky A, Sarris D (2013) Forest performance during two consecutive drought periods: diverging long-term trends and short-term responses along a climatic gradient. For Ecol Manag 310:1–9. doi:10.1016/j.foreco.2013.08.009

    Article  Google Scholar 

  20. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi:10.1017/S1464793105006950

    Article  Google Scholar 

  21. Einav R, Israel A (2007) Seaweeds on the abrasion platforms of the intertidal zone in eastern Mediterranean shores. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 193–207

    Chapter  Google Scholar 

  22. Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Global Change Biol 19:3640–3647. doi:10.1111/gcb.12356

    Article  Google Scholar 

  23. Gafny S (2004) Threatened amphibians of Israel. In Dolev A and Perevolotsky A (eds) Endangered species in Israel: red list of threatened animals. Vertebrates. Nature and Park Authority and the Society for the Preservation of Nature, Pub. Israel, pp 55–68

  24. Gafny S, Gasith A, Goren M (1992) Effect of water level fluctuation on the shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinneret, Israel. J Fish Biol 41:863–871

    Article  Google Scholar 

  25. Galil B (2008) Alien species in the Mediterranean Sea—which, when, where, why? Hydrobiologia 606:105–116. doi:10.1007/s10750-008-9342-z

    Article  Google Scholar 

  26. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol 15:1090–1103. doi:10.1111/j.1365-2486.2008.01823.x

    Article  Google Scholar 

  27. Gasith A, Gafny S (1990) Effects of water level fluctuation on the structure and function of the littoral zone. In: Tilzer M, Serruya C (eds) Large lakes: ecological structure and function. Springer-Verlag, Berlin, pp 156–171

    Chapter  Google Scholar 

  28. Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. doi:10.1146/annurev.ecolsys.30.1.51

    Article  Google Scholar 

  29. Gelabert ER (2007) Europe’s environment—the fourth assessment. EEA (European Environment Agency), Copenhagen

  30. Gertman I, Goldman R (2014) Interannual changes in the thermohaline structure of the south eastern Mediterranean. In: CIESM, Marseille (in press)

  31. Golodets C, Sternberg M, Kigel J, Boeken B, Henkin Z, Seligman NG, Ungar ED (2013) From desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity? Clim Change 119:785–798. doi:10.1007/s10584-013-0758-8

    Article  Google Scholar 

  32. Goodfriend GA (1988) Mid-Holocene rainfall in the Negev Desert from 13C of land snail shell organic matter. Nature 333:757–760 doi:10.1038/333757a0

  33. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x

    Article  Google Scholar 

  34. Harvell C, Mitchell C, Ward J, Altizer S, Dobson A, Ostfeld R, Samuel M (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162. doi:10.1126/science.1063699

    Article  CAS  Google Scholar 

  35. Heller J, Dolev A, Zohary T, Gal G (2014) Invasion dynamics of the snail Pseudoplotia scabra in Lake Kinneret. Biol Invasions 16:7–12. doi:10.1007/s10530-013-0500-5

    Article  Google Scholar 

  36. Hershkovitz Y, Gasith A (2013) Resistance, resilience, and community dynamics in Mediterranean-climate streams. Hydrobiologia 719:59–75. doi:10.1007/s10750-012-1387-3

    Article  Google Scholar 

  37. IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  38. Israel A, Hophy M (2002) Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biol 8:1–10. doi:10.1046/j.1365-2486.2002.00518.x

    Article  Google Scholar 

  39. Israel A, Einav R, Silva PC, Paz G, Chacana ME, Douek J (2010) First report of the seaweed Codium parvulum (Chlorophyta) in Mediterranean waters: recent blooms on the northern shores of Israel. Phycologia 49:107–112. doi:10.2216/09-28.1

    Article  CAS  Google Scholar 

  40. Lavergne S, Mouquet N, Thuiller W et al (2010) Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350. doi:10.1146/annurev-ecolsys-102209-144628

    Article  Google Scholar 

  41. Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann NY Acad Sci 1162:79–98. doi:10.1111/j.1749-6632.2009.04147.x

    Article  Google Scholar 

  42. Maruani T, Amit-Cohen I (2009) The effectiveness of the protection of riparian landscapes in Israel. Land Use Policy 26:911–918. doi:10.1016/j.landusepol.2008.11.002

    Article  Google Scholar 

  43. McBride MF, Burgman MA (2012) What is expert knowledge, how is such knowledge gathered, and how do we use it to address questions in landscape ecology? In: Perera AH, Drew CA, Johnson CJ (eds) Expert knowledge and its application in landscape ecology. Springer, Berlin, pp 11–38

    Chapter  Google Scholar 

  44. Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. doi:10.3354/cr031085

    Article  Google Scholar 

  45. Morri C, Puce S, Bianchi CN et al (2009) Hydroids (Cnidaria: Hydrozoa) from the Levant Sea (mainly Lebanon), with emphasis on alien species. J Mar Biol Assoc UK 89:49–62. doi:10.1017/S0025315408002749

    Article  Google Scholar 

  46. Nelson KC, Palmer MA, Pizzuto JE, Moglen GE, Angermeier PL, Hilderbrand RH, Dettinger M, Hayhoe K (2009) Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. J Appl Ecol 46:154–163. doi:10.1111/j.1365-2664.2008.01599.x

    Article  Google Scholar 

  47. Ostrovsky I, Rimmer A, Yacobi YZ, Nishri A, Sukenik A, Hadas O, Zohary T (2013) Long-term changes in the Lake Kinneret ecosystem: the effects of climate change and anthropogenic factors. In: Goldman CR, Kumagai M, Robarts RD (eds) Climate change and inland waters. Impacts and mitigation approaches for ecosystems and society. Wiley-Blackwell, New York, pp 271–293

    Google Scholar 

  48. Palmer M, Lettenmaier D, Poff N et al (2009) Climate change and river ecosystems: protection and adaptation options. Environ Manag 44:1053–1068. doi:10.1007/s00267-009-9329-1

    Article  Google Scholar 

  49. Pe’er G, Safriel U (2000) Climate Change Israel National Report under The United Nations Framework Convention on Climate Change: impact, vulnerability and adaptation: commissioned by the Ministry of Environment From the Blaustein Institute for Desert Research, Sede Boqer Campus of Ben-Gurion University of the Negev

  50. Preston BL, Yuen EJ, Westaway RM (2011) Climate adaptation planning in practice: an evaluation of adaptation plans from three developed nations. Mitig Adapt Strat Global Change 4:407–438. doi:10.1007/s11625-011-0129-1

    Article  Google Scholar 

  51. Quignard J, Raibaut A (1993) Ichthyofauna of the Languedocian Coast (Gulf of Lion): faunistic and demographic modifications. Vie Milieu 43:191–195

    Google Scholar 

  52. Revell D, Dugan J, Hubbard D (2011) Physical and ecological responses of sandy beaches to the 1997–98 El Niño. J Coast Res 27:718–730. doi:10.2112/JCOASTRES-D-09-00179.1

    Article  Google Scholar 

  53. Rilov G (2013) Regional extinctions and invaders’ domination: an ecosystem phase-shift of Levant reefs. In: Briand F (ed) 40th CIESM congress, Marseille (in press)

  54. Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration and growth rates of bloom forming cyanobacteria. NZ J Mar Freshw Res 21:391–399

    Article  CAS  Google Scholar 

  55. Rosen SD, Raskin L, Galanti B (2013) Long-term characteristics of sea level, wave, wind and current at central Mediterranean coast of Israel from 20 years of data at GLOSS station 80—Hadera. In: 40th CIESM congress, Marseille

  56. Safriel U (1974) Vermetid gastropods and intertidal reefs in Israel and Bermuda. Science 186:1113–1115

    Article  CAS  Google Scholar 

  57. Safriel U (2010) Israel’s National Biodiversity Plan. Ministry of Environmental Protection. http://www.cbd.int/iyb/doc/celebrations/iyb-israel-sviva-plan-en.pdf

  58. Samuels R, Rimmer A, Alpert P (2009) Effect of extreme rainfall events on the water resources of the Jordan River. J Hydrol 375:513–523. doi:10.1016/j.jhydrol.2009.07.001

    Article  Google Scholar 

  59. Sapir N, Wikelski M, Avissar R et al (2011) Timing and flight mode of departure in migrating European bee-eaters in relation to multi-scale meteorological processes. Behav Ecol Sociobiol 65:1353–1365. doi:10.1007/s00265-011-1146-x

    Article  Google Scholar 

  60. Sever N, Ne’eman G (2008) Drought damage and recovery of Quercus calliprinos after a series of drought years in Israel. Forest 10:10–16 (in Hebrew)

    Google Scholar 

  61. Shacham G (2003) Nature right for water: water allocation demands for water bodies and wet habitats—a policy statement document. Israel Ministry of the Environment and Israel Nature and Parks Authority. 46 pp (in Hebrew)

  62. Shirman B (2004) East Mediterranean sea level changes over the period 1958–2001. Israel J Earth Sci 53:1–12

    Article  Google Scholar 

  63. Shoo LP, O’Mara J, Perhans K, Rhodes JR, Runting RK, Schmidt S, Traill LW, Weber LC, Wilson KA, Lovelock CE (2014) Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Reg Environ Change 14:435–447. doi:10.1007/s10113-012-0385-3

    Article  Google Scholar 

  64. Siegal Z, Tzoar H, Karnieli A (2013) Effects of prolonged drought on the vegetation cover of sand dunes in NW Negev desert: field survey, remote sensing and conceptual modeling. Aeolian Res 9:161–173. doi:10.1016/j.aeolia.2013.02.002

    Article  Google Scholar 

  65. Silverman J, Lazar B, Cao L et al (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606. doi:10.1029/2008GL036282

    Google Scholar 

  66. Steinitz H (2010) The effects of global climate change on the distribution of terrestrial mammals in Israel. PhD thesis, Tel Aviv University

  67. Sternberg M, Holzapfel C, Tielbörger K, Sarah P, Kigel J, Lavee H, Fleischer A, Jeltsch F, Köchy M (2011) The use and misuse of climatic gradients for evaluating climate impact on dryland ecosystems - an example for the solution of conceptual problems. In: Blanco J, Kheradmand H (eds) Climate change—geophysical foundations and ecological effects, pp 361–374. doi:10.5772/23103

  68. Talmon Y, Sternberg M, Grünzweig JM (2011) Impact of precipitation change and spatial heterogeneity on soil respiration under a combination of aridity gradient and rainfall manipulation. Glob Change Biol 17:1108–1118. doi:10.1111/j.1365-2486.2010.02285.x

    Article  Google Scholar 

  69. Tzur Y, Safriel U (1978) Vermetid platforms as indicators of coastal movements. Israel J Earth Sci 27:124–127

    Google Scholar 

  70. Vicente-Serrano SM, Zouber A, Lasanta T, Pueyo Y (2012) Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecol Monogr 82:407–428. doi:10.1890/11-2164.1

    Article  Google Scholar 

  71. Yeruham E (2013) Possible explanations for Paracentrotus lividus (European purple sea urchin) population collapse in South-East Mediterranean. Tel Aviv University, Tel Aviv

    Google Scholar 

  72. Zacharias I, Zamparas M (2010) Mediterranean temporary ponds. A disappearing ecosystem. Biodivers Conserv 19:3827–3834. doi:10.1007/s10531-010-9933-7

    Article  Google Scholar 

  73. Zduniak P, Yosef R, Sparks T et al (2010) Rapid advances in the timing of the spring passage migration through Israel of the steppe eagle Aquila nipalensis. Climate Res 42:217–222. doi:10.1007/s10531-010-9933-7

    Article  Google Scholar 

  74. Ziv B, Saaroni H, Pargament R, Harpaz T, Alpert P (2014) Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg Environ Change. doi: 10.1007/s10113-013-0414-x (in press)

  75. Zohary T (2004) Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshw Biol 49:1355–1371

    Article  Google Scholar 

  76. Zohary T, Gasith A (2014) The Littoral zone. In: Zohary T, Sukenik A, Berman T, Nishri A (eds) Lake Kinneret: ecology and management. Springer, Heidelberg (in press)

  77. Zohary T, Ostrovsky I (2011) Ecological impacts of excessive water level fluctuations in stratified freshwater lake. Inland Waters 1:47–59. doi:10.5268/IW-1.1.406

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Israel Climate Change Information Center (ICCIC) in preparation for formulating Israel’s national response strategy to climate change. ICCIC was financially supported by the Israel Ministry for Environmental Protection (MEP). We thank all the people who answered the questionnaire as part of the expert survey and the Chief Scientist of MEP for supporting this project. Thanks are also extended to two anonymous reviewers for fruitful comments on an earlier version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcelo Sternberg.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sternberg, M., Gabay, O., Angel, D. et al. Impacts of climate change on biodiversity in Israel: an expert assessment approach. Reg Environ Change 15, 895–906 (2015). https://doi.org/10.1007/s10113-014-0675-z

Download citation

Keywords

  • Adaptation
  • Connectivity
  • Freshwater ecosystems
  • Marine ecosystems
  • Protected corridors
  • Terrestrial ecosystems