Local biofuel production for rural electrification potentially promotes development but threatens food security in Laela, Western Tanzania

Abstract

The impacts of biofuel production and the adequacy of the associated production structures are controversial matters despite a projected medium-term growth rate increase. Concurrently, electricity is increasingly perceived as a prerequisite for development. In this article, we assess the potential impacts of the local production of biofuels for electricity production on development and the food supply in the village of Laela in Western Tanzania. Based on a village survey, focus group discussions and expert interviews, we calculated the potential food security effects on four different economic types of farmer groups. The objective of this analysis was to evaluate the potential use of sunflower and groundnut oils as substitutes for fossil fuels for the production of electricity. The baseline framework is based on a comparison of crop production data with current fossil fuel consumption. The ex-ante scenarios assess the gap between the estimated yield losses and the increasing fuel demand through 2015. These comparative analyses of schemes in which vegetable oil production replaces a given level of crop production showed that replacing food crops with crops producing biofuel will most likely impact local food security negatively, causing increased hunger, especially for the poorest farmers and even if climate change is not considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahlborg H, Hammar L (2012) Drivers and barriers to rural electrification in Tanzania and Mozambique—Grid-extension, off-grid, and renewable energy technologies. Renew Energy (0). doi:10.1016/j.renene.2012.09.057

  2. Ahmed SA, Diffenbaugh NS, Hertel TW, Lobell DB, Ramankutty N, Rios AR, Rowhani P (2011) Climate volatility and poverty vulnerability in Tanzania. Glob Environ Change 21(1):46–55. doi:10.1016/j.gloenvcha.2010.10.003

    Article  Google Scholar 

  3. Amigun B, Musango JK, Stafford W (2011) Biofuels and sustainability in Africa. Renew Sustain Energy Rev 15(2):1360–1372. doi:10.1016/j.rser.2010.10.015

    Article  Google Scholar 

  4. Bazilian M, Nussbaumer P, Eibs-Singer C, Brew-Hammond A, Modi V, Sovacool B, Ramana V, Aqrawi P-K (2012a) Improving access to modern energy services: insights from case studies. Electr J 25(1):93–114. doi:10.1016/j.tej.2012.01.007

    Article  Google Scholar 

  5. Bazilian M, Nussbaumer P, Rogner H–H, Brew-Hammond A, Foster V, Pachauri S, Williams E, Howells M, Niyongabo P, Musaba L, Gallachóir BÓ, Radka M, Kammen DM (2012b) Energy access scenarios to 2030 for the power sector in sub-Saharan Africa. Util Policy 20(1):1–16. doi:10.1016/j.jup.2011.11.002

    Article  Google Scholar 

  6. Bogner A, Menz W (2002) Expertenwissen und Forschungspraxis: die Modernisierungstheoretische und die methodische Debatte um die Experten. In: Bogner A, Littig B, Menz W (eds) Das Experteninterview. Theorie, Methoden, Anwendungen. Leske + Budrich, Opladen, pp 7–30

    Google Scholar 

  7. Brew-Hammond A (2010) Energy access in Africa: challenges ahead. Energy Policy 38(5):2291–2301. doi:10.1016/j.enpol.2009.12.016

    Article  Google Scholar 

  8. Cotula L, Dyer N, Vermeulen S (2008) Fuelling exclusion? The biofuels boom and poor people’s access to land. IIED, London, UK

    Google Scholar 

  9. Crutzen P, Mosier A, Smith K, Winiwarter W (2009) Atmospheric N2O releases from biofuel production systems: a major factor against “CO2 Emission Savings”: a global view. In: Zerefos C, Contopoulos G, Skalkeas G (eds) Twenty years of ozone decline. Springer, Netherlands, pp 67–70. doi:10.1007/978-90-481-2469-5_6

    Google Scholar 

  10. Dasappa S (2011) Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy Sustai Dev 15(3):203–213. doi:10.1016/j.esd.2011.07.006

    Article  Google Scholar 

  11. Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86(Supplement 1 (0)):S108–S117. doi:10.1016/j.apenergy.2009.04.036

    CAS  Article  Google Scholar 

  12. Demirbas AH, Demirbas I (2007) Importance of rural bioenergy for developing countries. Energy Convers Manag 48(8):2386–2398. doi:10.1016/j.enconman.2007.03.005

    Article  Google Scholar 

  13. Denton F (2004) Reducing the gap between projects and policies: a comparative analysis of the “butanisation” programme in Senegal and the multifunctional platform (MFP) experience in Mali. Energy Sustain Dev 8(2):17–29. doi:10.1016/S0973-0826(08)60456-1

    Article  Google Scholar 

  14. Ejigu M (2008) Toward energy and livelihoods security in Africa: smallholder production and processing of bioenergy as a strategy. Natural Resources Forum 32:152–162. doi:10.1111/j.1477-8947.2008.00189.x

  15. FAO (1996) Rome declaration on world food security. World Food Summit: Plan of Action § 1. http://www.fao.org/docrep/003/w3613e/w3613e00.HTM. Accessed 01.07.2013

  16. FAO (2010) The BEFS analysis for Tanzania Environment and Natural Resources Management Working Paper, vol 35. FAO, Rome

  17. FAO (2013) Hunger Portal. Basic definitions. http://www.fao.org/hunger/en/. Accessed 01.07.13

  18. FAOSTAT (2013) Food and agricultural organization statistical database. http://faostat3.fao.org/home/index.html

  19. Gaul M (2012) An analysis model for small-scale rural energy service pathways — Applied to Jatropha-based energy services in Sumbawa, Indonesia. Energy Sustain Dev 16(3):283–296. doi:10.1016/j.esd.2012.05.001

    Article  Google Scholar 

  20. Grompone MA (2005) Sunflower oil. In: Shahidi F (ed) Bailey’s Industrial Oil and Fat Products, vol 2. 6th edn. John Wiley & Sons, New York, pp 655-730. doi:10.1002/047167849X.bio017

  21. Harvey M, Pilgrim S (2011) The new competition for land: food, energy, and climate change. Food Policy 36:S40–S51. doi:10.1016/j.foodpol.2010.11.009

    Article  Google Scholar 

  22. Havet I (2003) Linking women and energy at the local level to global goals and targets. Energy Sustain Dev 7(3):75–79. doi:10.1016/S0973-0826(08)60369-5

    Article  Google Scholar 

  23. Hoffmann H, Uckert G, Rordorf J, Sieber S (2012) Sunflower for horsepower—potentials of locally embedded biofuel production and consumption in Laela, Western Tanzania. In: The 10th European IFSA Symposium, Aarhus, Denmark

  24. Holt-Giménez E (2007) Green or mean? The biofuel myths. The New York Times, New York. http://www.nytimes.com/2007/07/10/opinion/10iht-edholt.1.6588231.html?pagewanted=all. Accessed 1 July 2013

  25. IEA (2011) Energy for all. Financing access for the poor. Special excerpt of the World Energy Outlook 2011. IEA, Paris

    Google Scholar 

  26. Johnson FX, Lambe F (2009) Energy Access, Climate and Development. Commission on Climate Change and Development, Stockholm, Sweden. http://www.sei-international.org/mediamanager/documents/Publications/Climate/ccd_energyaccessclimateanddev2009.pdf. Accessed 1 July 2013

  27. Kaundinya DP, Balachandra P, Ravindranath NH (2009) Grid-connected versus stand-alone energy systems for decentralized power—a review of literature. Renew Sustain Energy Rev 13(8):2041–2050. doi:10.1016/j.rser.2009.02.002

    Article  Google Scholar 

  28. Kaygusuz K (2011) Energy services and energy poverty for sustainable rural development. Renew Sustain Energy Rev 15(2):936–947. doi:10.1016/j.rser.2010.11.003

    Article  Google Scholar 

  29. Kibazohi O, Sangwan RS (2011) Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: assessment of renewable energy resources for bio-energy production in Africa. Biomass Bioenergy 35(3):1352–1356. doi:10.1016/j.biombioe.2010.12.048

    CAS  Article  Google Scholar 

  30. Kumar K (2006) Conducting mini surveys in developing countries. USAID Program Design and Evaluation Methodology Report. USAID, Washington D.C

    Google Scholar 

  31. Lahimer AA, Alghoul MA, Yousif F, Razykov TM, Amin N, Sopian K (2013) Research and development aspects on decentralized electrification options for rural household. Renew Sustain Energy Rev 24:314–324. doi:10.1016/j.rser.2013.03.057

    Article  Google Scholar 

  32. Mitchell D (2011) Biofuels in Africa. Opportunities, prospects and challenges. The World Bank, Washington D.C

    Google Scholar 

  33. Murphy R, Woods J, Black M, McManus M (2011) Global developments in the competition for land from biofuels. Food Policy 36:S52–S61. doi:10.1016/j.foodpol.2010.11.014

    Article  Google Scholar 

  34. Mustapha SB, Sanda AH, Shehu H (2012) Farmers’ perception on climate change in central agricultural zone of Borno State, Nigeria. J Environ Earth Sci 2(11):21–27

    Google Scholar 

  35. Nonhebel S, Kastner T (2011) Changing demand for food, livestock feed and biofuels in the past and in the near future. Livest Sci 139(1–2):3–10. doi:10.1016/j.livsci.2011.03.021

    Article  Google Scholar 

  36. Pearce F (2012) The landgrabbers. The new fight over who owns the Earth. Beacon Press, Boston

    Google Scholar 

  37. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  38. Peskett L (2011) The history of mini-grid development in developing countries. Policy brief. Global Village Energy Partnership, London, UK

    Google Scholar 

  39. Rowhani P, Lobell DB, Linderman M, Ramankutty N (2011) Climate variability and crop production in Tanzania. Agric For Meteorol 151(4):449–460. doi:10.1016/j.agrformet.2010.12.002

    Article  Google Scholar 

  40. Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295(5562):2019–2020. doi:10.1126/science.1065256

    CAS  Article  Google Scholar 

  41. Sanga GA, Meena SB (2008) Bio-fuel powered energy service platforms fir rural energy services. Design, installation, operation, maintenance and mangement. TaTEDO, Dar es Salaam

    Google Scholar 

  42. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240. doi:10.1126/science.1151861

    CAS  Article  Google Scholar 

  43. Szilas C, Semoka JMR, Borggaard OK (2007) Can local Minjingu phosphate rock replace superphosphate on acid soils in Tanzania? Nutr Cycl Agroecosyst 77(3):257–268. doi:10.1007/s10705-006-9064-4

    CAS  Article  Google Scholar 

  44. Tanzania Go (2006) Rukwa. Regional and district projections Volume XII. United Republic of Tanzania, Dar es Salaam

  45. Tanzania Go (2008) Agriculture and livestock. http://www.rukwa.go.tz/kurasa/kilimo_mifugo/kilimo/index.php. Accessed 01.07.13

  46. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels–the food, energy, and environment trilemma. Science 325(5938):270–271. doi:10.1126/science.1177970

    Google Scholar 

  47. Turner AG (2003) Sampling strategies. Expert Group Meeting to Review the Draft Handbook on Designing of Household Sample Survey. UN Statistic Division

  48. USAID (2010) Tanzania Food Security Outlook—October 2010 through March 2011 Washington

  49. Vermeulen S, Cotula L (2010) Over the heads of local people: consultation, consent, and recompense in large-scale land deals for biofuels projects in Africa. J Peasant Stud 37(4):899–916. doi:10.1080/03066150.2010.512463

    Article  Google Scholar 

  50. Vitale JD (2010) The commercial application of GMO crops in Africa: burkina faso’s decade of experience with bt cotton. AgBioForum 13(4):320–332

    Google Scholar 

  51. von Braun J, Pachauri RK (2006) The promises and challenges of biofuels for the poor in developing countries. IFPRI 2005-2006 Annual Report Essay. IFPRI, Washington. doi:10.2499/0896299147

  52. Williams M (2009) Energy neglect hurting poverty fight: U.N. climate chief. 21.1.2009. http://in.reuters.com/article/2009/01/21/us-india-energy-idINTRE50K36G20090121. Accessed 1 July 2013

  53. World Bank (2007) Growth prospects for Rukwa region: constraints and opportunities. World Bank, Washington

    Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to the helpful and friendly people of Laela and the German Federal Ministry for Economic Cooperation and Development (BMZ) as well as the German Federal Ministry of Education and Research (BMBF) for financing the projects Better-iS (http://www.better-is.com/) and Trans-SEC (http://www.trans-sec.org). Furthermore, we thank the Advisory Service on Agricultural Research for Development (BEAF) of the Deutsche Gesellschaft für Internationale Zusmmenarbeit (giz) for facilitating the project Better-iS. Additionally we thank the Leibniz-Centre for Agricultural Landscape Research ZALF e.V. for financing FSA-Africa which additionally supported this publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harry Hoffmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoffmann, H., Uckert, G., Reif, C. et al. Local biofuel production for rural electrification potentially promotes development but threatens food security in Laela, Western Tanzania. Reg Environ Change 15, 1181–1190 (2015). https://doi.org/10.1007/s10113-014-0596-x

Download citation

Keywords

  • Biofuels
  • Rural electrification
  • Food security
  • Vegetable oil
  • Tanzania