Robust multidimensional pricing: separation without regret


We study a robust monopoly pricing problem with a minimax regret objective, where a seller endeavors to sell multiple goods to a single buyer, only knowing that the buyer’s values for the goods range over a rectangular uncertainty set. We interpret this pricing problem as a zero-sum game between the seller, who chooses a selling mechanism, and a fictitious adversary or ‘nature’, who chooses the buyer’s values from within the uncertainty set. Using duality techniques rooted in robust optimization, we prove that this game admits a Nash equilibrium in mixed strategies that can be computed in closed form. The Nash strategy of the seller is a randomized posted price mechanism under which the goods are sold separately, while the Nash strategy of nature is a distribution on the uncertainty set under which the buyer’s values are comonotonic. We further show that the restriction of the pricing problem to deterministic mechanisms is solved by a deteministic posted price mechanism under which the goods are sold separately.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Bandi, C., Bertsimas, D.: Optimal design for multi-item auctions: a robust optimization approach. Math. Oper. Res. 39(4), 1012–1038 (2014)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Google Scholar 

  3. 3.

    Bergemann, D., Schlag, K.: Pricing without priors. J. Eur. Econ. Assoc. 6(2–3), 560–569 (2008)

    Article  Google Scholar 

  4. 4.

    Bergemann, D., Schlag, K.: Robust monopoly pricing. J. Econ. Theory 146(6), 2527–2543 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bhargava, H.K.: Mixed bundling of two independently valued goods. Manag. Sci. 59(9), 2170–2185 (2013)

    Article  Google Scholar 

  7. 7.

    Bichler, M.: Market Design: A Linear Programming Approach to Auctions and Matching. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  8. 8.

    Carrasco, V., Luz, V.F., Kos, N., Messner, M., Monteiro, P., Moreira, H.: Optimal selling mechanisms under moment conditions. J. Econ. Theory 177, 245–279 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Carroll, G.: Robustness and separation in multidimensional screening. Econometrica 85(2), 453–488 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Daskalakis, C., Deckelbaum, A., Tzamos, C.: Mechanism design via optimal transport. In: Proceedings of the 14th ACM Conference on Electronic Commerce, pp. 269–286 (2013)

  11. 11.

    Daskalakis, C., Deckelbaum, A., Tzamos, C.: The complexity of optimal mechanism design. In: Proceedings of the 25th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1302–1318 (2014)

  12. 12.

    Daskalakis, C., Deckelbaum, A., Tzamos, C.: Strong duality for a multiple-good monopolist. Econometrica 85(3), 735–767 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Fanzeres, B., Ahmed, S., Street, A.: Robust strategic bidding in auction-based markets. Eur. J. Oper. Res. 272(3), 1158–1172 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Giannakopoulos, Y., Koutsoupias, E.: Duality and optimality of auctions for uniform distributions. In: Proceedings of the 15th ACM Conference on Economics and Computation, pp. 259–276 (2014)

  15. 15.

    Gravin, N., Lu, P.: Separation in correlation-robust monopolist problem with budget. In: Proceedings of the Twenty-Ninth Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 2069–2080. SIAM (2018)

  16. 16.

    Guslitser, E.: Uncertainty-Immunized Solutions in Linear Programming. Master’s thesis, Technion-Israel Institute of Technology (2002)

  17. 17.

    Hart, S., Nisan, N.: Approximate revenue maximization with multiple items. J. Econ. Theory 172, 313–347 (2017a)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Hart, S., Nisan, N.: The Menu-size Complexity of Auctions. Technical report, The Hebrew University of Jerusalem (2017)

  19. 19.

    Lagarias, J.: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. 50(4), 527–628 (2013)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Li, X., Yao, A.C.C.: On revenue maximization for selling multiple independently distributed items. Proc. Natl. Acad. Sci. 110(28), 11232–11237 (2013)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Lopomo, G., Marx, L.M., Sun, P.: Bidder collusion at first-price auctions. Rev. Econ. Des. 15(3), 177–211 (2011)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Manelli, A.M., Vincent, D.R.: Bundling as an optimal selling mechanism for a multiple-good monopolist. J. Econ. Theory 127(1), 1–35 (2006)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading. J. Econ. Theory 29(2), 265–281 (1983)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Pınar, M.Ç., Kızılkale, C.: Robust screening under ambiguity. Math. Program. 163(1–2), 273–299 (2017)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Riley, J., Zeckhauser, R.: Optimal selling strategies: when to haggle, when to hold firm. Q. J. Econ. 98(2), 267–289 (1983)

    Article  Google Scholar 

  27. 27.

    Savage, L.J.: The theory of statistical decision. J. Am. Stat. Assoc. 46(253), 55–67 (1951)

    Article  Google Scholar 

  28. 28.

    Thanassoulis, J.: Haggling over substitutes. J. Econ. Theory 117(2), 217–245 (2004)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Vohra, R.V.: Optimization and mechanism design. Math. Program. 134(1), 283–303 (2012)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Wiesemann, W., Tsoukalas, A., Kleniati, P.M., Rustem, B.: Pessimistic bilevel optimization. SIAM J. Optim. 23(1), 353–380 (2013)

    MathSciNet  Article  Google Scholar 

Download references


This research was funded by the SNSF grant BSCGI0_157733 and by the NUS Start-up Grant R-266-000-131-133.

Author information



Corresponding author

Correspondence to Çağıl Koçyiğit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koçyiğit, Ç., Rujeerapaiboon, N. & Kuhn, D. Robust multidimensional pricing: separation without regret. Math. Program. (2021).

Download citation

Mathematics Subject Classification

  • 91B03
  • 90C47
  • 90C17